You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
11 January 2019Design of the front window of full-disc vector magnetograph
Full-disc vector magnetograph (FMG) is one of the main loads in the Advanced Space-based Solar Observatory. FMG is used to realize scientific goals of observing full-disk vector magnetic field with center wavelength of 532.4 nm. The optical system of FMG consists of polarized optical system and imaging optical system, and the imaging optical system composes of the front window and telescope system. The front window has the capability for providing proper situation for scientific observation by absorbing high energy of solar irradiance coming from space while reflecting wavelength of non-scientific investigation beyond wavelength of 532.4±5 nm. The study analyzed the influence of complex space environment on optical glasses. As a result, the material of fused silica, while two pieces of flat glass parallel with 3mm separation structure and thickness of 15mm are determined. Finally, the results show that design for the front window meet the required specifications.
The alert did not successfully save. Please try again later.
Xingfeng Wang, Fu Li, Guoqing Chen, Juan Lv, Zhizhou Lu, Jianfeng Yang, "Design of the front window of full-disc vector magnetograph," Proc. SPIE 10837, 9th International Symposium on Advanced Optical Manufacturing and Testing Technologies: Large Mirrors and Telescopes, 1083713 (11 January 2019); https://doi.org/10.1117/12.2504797