You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
30 January 19890.6µm CMOS Technology Using Desire Process
By using PLASMASK(*) resist in the DESIRE(*) process, multilayer resist performances can be achieved on a single layer. The aim of this paper is to show , for each step of DESIRE process , the influence of the different parameters on lithographic performances , and finally the use of such process on critical levels for 0.6μm CMOS technology . Exposure experiment have been performed on an I-line ASM stepper ( NA = 0.4 ) A modified HMDS vapor prime from SVG has been used for resist silylation . Silicon depth profi-les in PLASMASK resist versus dose, time and temperature of silylation have been measured by RBS method. Statistical Experimental Designs (S.E.D.) have allowed the determination of process parameters influence as well as the identification of their interactions on lithographic performances . The resulting optimized process will be demonstrated on a metal 1, 0.64μm CMOS technology. * PLASMASK and DESIRE are trademarks from UCB Electronics.
The alert did not successfully save. Please try again later.
F. Vinet, M. Chevallier, J. C. Guibert, Ch. Pierrat, "0.6 µm CMOS Technology Using Desire Process," Proc. SPIE 1086, Advances in Resist Technology and Processing VI, (30 January 1989); https://doi.org/10.1117/12.953056