You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
28 February 2019Smartphone-based fluorescence imager for PpIX-based PDT treatment planning: System design and initial results
In clinical delivery of PDT, in-situ measurement of PpIX concentration is rarely done, and yet point-probe measurements have shown extreme heterogeneity exists between patients and between lesions. Direct measurements of PpIX can provide guidance in PDT, informing critical decisions about treatment time and retreatment or further skin preparation. In this work, we present a smartphone-based fluorescence imaging system to map PpIX concentration onto a 2D image for the use in PDT treatment optimization. The hand-held system utilizes a custom application on an iPhone 6s in conjunction with a 3D-printed measurement base containing custom miniaturized light source and electronics and filter system. The prototype has been produced and tested in phantoms and in pre-clinical evaluation. Intralipid phantom measurements detected clinicallyrelevant concentrations of PpIX within the 0.05μM - 4μM range. Preclinical tests on mice showed the ability to detect PpIX concentration for topically applied ALA within 20-30 minute incubation. These results showcase the viability of the system to map pixel intensities to PpIX concentrations and perform in-vivo detection within a clinically relevant timeframe. Clinical trials are in preparation with results expected in the next few months.
The alert did not successfully save. Please try again later.
Alberto J. Ruiz, Ethan P. M. LaRochelle, M. Shane Chapman, Tayyaba Hasan, Brian Pogue, "Smartphone-based fluorescence imager for PpIX-based PDT treatment planning: System design and initial results," Proc. SPIE 10860, Optical Methods for Tumor Treatment and Detection: Mechanisms and Techniques in Photodynamic Therapy XXVIII, 108600R (28 February 2019); https://doi.org/10.1117/12.2510403