You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
4 March 2019Patterning of DNA hydrogels by photodecomposition with visible light (Conference Presentation)
Light irradiation is a promising way for spatial gel formation, and it is useful in cell arrangement by control of the shape of gels. To form the shape of gels by light irradiation, temperature control and irradiation of ultraviolet light, which causes damage to cells, are required. In this study, we propose a shape control method of DNA hydrogels by photodecomposition with visible light. By design of DNA sequences and modification of molecules, DNA hydrogels can be decomposed by changing the environment including temperature, pH, and the presence of specific molecules. In our method, the DNA hydrogels are constructed by self-assembly of Y-motif DNAs (Y-DNAs) combined with linker DNAs (L-DNAs). For optical control, the L-DNA is modified with quenchers. When quenchers are optically excited, thermal energy is released via a non-radiative relaxation process of the quenchers, and then denaturation of DNAs consisting of Y-DNAs and L-DNAs is induced. Separated Y-DNAs bind with a Cap-DNA which prevents Y-DNAs from recombination with L-DNAs, and DNA hydrogels are decomposed as a result of the separation of Y-DNAs and L-DNAs. This decomposition is only induced within the irradiation area. Thus, the shape is changed by control of light distribution. In experiments, we demonstrated the decomposition of DNA hydrogels according to holographically generated light patterns. This result shows that the shape of DNA hydrogels can be controlled by visible-light irradiation without changing the environment.
The alert did not successfully save. Please try again later.
Suguru Shimomura, Takahiro Nishimura, Yusuke Ogura, Jun Tanida, "Patterning of DNA hydrogels by photodecomposition with visible light (Conference Presentation)," Proc. SPIE 10875, Microfluidics, BioMEMS, and Medical Microsystems XVII, 108750N (4 March 2019); https://doi.org/10.1117/12.2507095