You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
5 March 2019Upconversion nanoparticles assisted multi-photon fluorescence saturation microscopy
Bright and photo-stable luminescent nanoparticles held great potential for bioimaging, long-term molecular tracking. Rare-earth-doped upconversion nanoparticles (UCNPs) have been recently discovered with unique properties for Stimulated Emission Depletion (STED) super-resolution microscopy imaging. However, this system strictly requires optical alignment of concentric excitation and depletion beams, resulting in cost, stability, and complicity of the system. Taking the advantage of intermediate state saturation in UCNPs, emission saturation nanoscopy has been developed as a simplified modality by using a single doughnut excitation beam. In this work, we report that the emission saturation curve of fluorescence probes can modulate the performance of multi-photon emission saturation nanoscopy. With the precise synthesis of UCNPs, we demonstrate the resolution of this new imaging approach can be improved with five parameters, including emission band, activator doping, excitation power, sensitizer doping, core-shell. This approach opens a new strategy to a simple solution for super-resolution imaging and single molecule tracking at low cost, suggesting a large scope for materials science community to improve the performance of emission saturation nanoscopy.