Recent advances in optical materials have enabled the development of a wide range of integrated photonic devices from high speed modulators to frequency combs. With low optical loss over a wide wavelength range and environmental stability in ambient environments for several weeks, silicon oxynitride (SiOxNy) shows potential in many of these applications. However, unlike many classic optical materials, the thermo-optic response (dn/dT) in both the visible and near-IR is poorly characterized, limiting researcher’s ability to accurately model device performance. Here, we leverage the intrinsic thermal response of resonant cavities to measure the dn/dT of SiOxNy with a 12.7:1 and 4:1 oxygen to nitrogen ratio based on EDX measurements. The thermo-optic coefficient is measured in the visible and near-IR and compared with SiO2. The refractive indices of the silicon oxynitride films were also measured using spectroscopic ellipsometry. Based on an analysis of the O:N ratio and a comparison with both SiO2 and Si3N4, an expression for the dependence of the dn/dT on the stoichiometric ratio is developed.
|