Paper
4 March 2019 High output power laser transmitter for high-efficiency deep-space optical communications
J. M. Dailey, M. Dinu, R. Prego, J. Kolchmeyer, M. Berry, A. Monte, J. Engelberth, A. Maliakal, A. Piccirilli, J. LeGrange, R. Ahrens, T. Sochor, J. Jaques, M. W. Wright
Author Affiliations +
Proceedings Volume 10910, Free-Space Laser Communications XXXI; 109100M (2019) https://doi.org/10.1117/12.2511193
Event: SPIE LASE, 2019, San Francisco, California, United States
Abstract
We report on the design, development, and testing of the high-power Laser Transmitter Assembly (LTA) supporting the Deep Space Optical Communications (DSOC) demonstration hosted on the Psyche Discovery class mission, due to launch in 2022. The DSOC project, under development by NASA’s Jet Propulsion Laboratory, will test space-to-ground high-bandwidth laser communications while en route to the Psyche-16 asteroid in the main asteroid belt, in what will be the longest range high rate optical communications link in history. The LTA is based on a master-oscillator power-amplifier optical architecture, using highly-efficient cladding-pumped amplification. The transmitter is designed to deliver average optical output powers <4 W at 1550 nm for low power consumption data links at <100 Mbps. The output signal operates across multiple pulse-position modulation (PPM) orders and pulse-widths to optimize the space-to-ground link. The architecture is designed for high-reliability and radiation hardness, and features hardware interlocks and secondary signal/pumping paths to reduce single points of failure. We also detail the effective management of optical nonlinearities which could damage the LTA or impact the communications link. These include the suppression of stimulated Brillouin scattering, self-phase modulation, and pulseto- pulse energy variation (PEV), which arises from the gain dynamics of the power amplifier, and will manifest when the LTA is configured for large pulse energies and long inter-pulse delays. The LTA also incorporates hardware and software controls to enable autonomous operation, including closed-loop control of intra-stage and output power levels, modulator bias control, and detailed reporting of LTA status through telemetry.
© (2019) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
J. M. Dailey, M. Dinu, R. Prego, J. Kolchmeyer, M. Berry, A. Monte, J. Engelberth, A. Maliakal, A. Piccirilli, J. LeGrange, R. Ahrens, T. Sochor, J. Jaques, and M. W. Wright "High output power laser transmitter for high-efficiency deep-space optical communications", Proc. SPIE 10910, Free-Space Laser Communications XXXI, 109100M (4 March 2019); https://doi.org/10.1117/12.2511193
Lens.org Logo
CITATIONS
Cited by 1 scholarly publication.
Advertisement
Advertisement
RIGHTS & PERMISSIONS
Get copyright permission  Get copyright permission on Copyright Marketplace
KEYWORDS
Control systems

Modulation

Optical amplifiers

Polarization

Modulators

Reliability

Space operations

Back to Top