You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
8 March 2019Two-way asymmetric flat optics with nonlinear metasurfaces (Conference Presentation)
Asymmetric transport is an uneven physical response of counter-propagating signals that has significantly contributed to fundamental science and revolutionized advanced technology via a variety of significant devices including diodes and isolators in electronics, optics, acoustics, and heat transfer. Photonic metasurfaces are two-dimensional ultrathin arrays of engineered subwavelength meta-atoms, acting as local phase shifters, which unprecedentedly mold wavefronts at will with a virtually flat optical element. While such an architecture can be potentially harnessed to achieve two-way asymmetric response of free-space light at an optically thin flatland, asymmetric light transport cannot be fundamentally achieved by any linear system including linear metasurfaces. Here, we report asymmetric transport of free-space light at nonlinear metasurfaces, with harmonic generation, upon transmission and reflection. We also derive the nonlinear generalized Snell’s laws of reflection and refraction which were experimentally verified by angle-resolved anomalous refraction and reflection of the nonlinear light. The asymmetric transport at optically thin nonlinear interfaces is revealed by comparing the original path of light through the metasurface with its corresponding reversed propagation path. Such a two-way asymmetric response at metasurfaces opens a new paradigm for free-space ultrathin lightweight optical devices with one-way operation including unrivaled optical valves and diodes.
The alert did not successfully save. Please try again later.
Nir Shitrit, Jeongmin Kim, David S. Barth, Hamidreza Ramezani, Yuan Wang, Xiang Zhang, "Two-way asymmetric flat optics with nonlinear metasurfaces (Conference Presentation)," Proc. SPIE 10928, High Contrast Metastructures VIII, 109280Y (8 March 2019); https://doi.org/10.1117/12.2511079