You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
4 March 2019Optical magnetic field sensor based on guided-mode resonance with Ni subwavelength grating/waveguide structure
Highly sensitive optical sensor for magnetic field detection was experimentally demonstrated using a guided-mode resonance in waveguide with Ni nano-grating. The electromagnetic field distribution was calculated by finite-difference time-domain method in order to estimate the sensing performance of our device. The calculation results indicated that the optical characteristics of our sensor considerably varied with applying magnetic field. We fabricated the Ni-subwavelength grating/ Si3N4 waveguide structure on the optical glass substrate using electron beam lithography technique. The reflection peak resulting from the guided-mode in the waveguide was obtained with normal incident geometry. The peak intensity depended on static magnetic field applied to the structure, and the intensity changed by about 5 % for the magnetic field intensity of 39.4 mT. These experimental results suggest our sensor can sensitively detect magnetic field while avoiding use of the complex and expensive system, and our device is pretty suitable for the integration devices in internet of things society.
The alert did not successfully save. Please try again later.
Yuusuke Takashima, Masanobu Haraguchi, Yoshiki Naoi, "Optical magnetic field sensor based on guided-mode resonance with Ni subwavelength grating/waveguide structure," Proc. SPIE 10928, High Contrast Metastructures VIII, 109281S (4 March 2019); https://doi.org/10.1117/12.2509490