You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
1 March 2019Using one test bolus to monitor bolus arriving at two locations in CT angiography runoff scans: a feasibility simulation study
This study proposes a method of using one test bolus to monitor peak bolus arrival time at two locations, the aorta and the knee, in CT angiography lower-extremity runoff scans. The resulting aortopopliteal transition time will facilitate determining appropriate CT scan parameters to match the bolus speed. The proposed method first monitors the test bolus peak at the aorta. When the contrast enhancement peak is measured, the table is moved to monitor the test bolus at the knee. Instead of cross-sectional images, the proposed method exploits projection (single view) scans for monitoring the bolus to reduce X-ray exposure and to enable real-time peak identification. The feasibility on scan timing of the proposed method was verified by simulations. The medium and high mean blood velocities used in this study were simulated by Monte Carlo methods. Blood velocity at each location inside the arteries were obtained by a three-segment blood velocity simulation. Table motion specifications of a clinical CT scanner were also simulated. Results shown that for medium aortopopliteal distance (690 mm) and medium blood velocity (65.8 mm/sec), the table arrived at the knee position 9.99 seconds ahead of the test bolus peak, which is enough time to monitor the bolus peak at the second location. For the most challenging case, i.e. shortest aortopopliteal distance (624 mm) and high blood velocity (179.5 mm/sec), the time difference between table and bolus peak arrival to the second location was 1.87 seconds, which allows a small window of monitor scans to detect the bolus peak.
The alert did not successfully save. Please try again later.
Hongfeng Ma, Mingye Wu, Christine Hammond, Taly Gilat Schmidt, "Using one test bolus to monitor bolus arriving at two locations in CT angiography runoff scans: a feasibility simulation study," Proc. SPIE 10948, Medical Imaging 2019: Physics of Medical Imaging, 109482K (1 March 2019); https://doi.org/10.1117/12.2513292