You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
13 March 2019Computerized identification of early ischemic changes in acute stroke in noncontrast CT using deep learning
Treatment for patients with acute ischemic stroke is most commonly determined based on findings on noncontrast computerized tomography (CT). Identifying hypoattenuation of the early ischemic changes on CT images is crucial for diagnosis. However, it is difficult to identify hypoattenuation with certainty. We present an atlas-based computerized method using a convolutional neural network (CNN) to identify hypoattenuation in the lentiform nucleus and the insula, two locations where hypoattenuation appears most frequently. The algorithm for this method consisted of anatomic standardization, setting of regions, creation of input images for classification, training on the CNN and classification of hypoattenuation. The regions of the lentiform nucleus and insula were set according to the Alberta Stroke Programme Early CT score (ASPECTS) method, a visual quantitative CT scoring system. AlexNet was used in the classification of the CNN architecture. We applied this method to the lentiform nucleus and insula using a database of 20 patients with right-sided hypoattenuation, 20 patients with left-sided hypoattenuation, and 20 normal subjects. Our method was evaluated using a leave-one-case-out cross-validation test. This new method had an average accuracy of 88.3%, an average sensitivity of 87.5%, and an average specificity of 90% for identifying hypoattenuation in the two regions. These results indicate that this new method has the potential to accurately identify hypoattenuation in the lentiform nucleus and the insula in patients with acute ischemic stroke.
The alert did not successfully save. Please try again later.
Noriyuki Takahashi, Yuki Shinohara, Toshibumi Kinoshita, Tomomi Ohmura, Keisuke Matsubara, Yongbum Lee, Hideto Toyoshima, "Computerized identification of early ischemic changes in acute stroke in noncontrast CT using deep learning," Proc. SPIE 10950, Medical Imaging 2019: Computer-Aided Diagnosis, 109503A (13 March 2019); https://doi.org/10.1117/12.2507351