You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
13 March 2019Radiomics and deep learning of diffusion-weighted MRI in the diagnosis of breast cancer
The incorporation of diffusion-weighted imaging (DWI) in breast magnetic resonance imaging (MRI) has shown potential in improving the accuracy of breast cancer diagnosis. Since DWI measures possibly complementary biological properties to dynamic contrast-enhanced (DCE) MRI parameters, DWI computer-aided diagnosis (CADx) can potentially improve the performance of current CADx systems in distinguishing between benign and malignant breast lesions. This study was performed on a database of 397 diffusion-weighted breast MR images (69 benign and 328 malignant). Lesions were automatically segmented using a fuzzy C-means method. The apparent diffusion coefficient (ADC)-based radiomic features were extracted and used to train a classifier. Another classifier was trained on convolutional neural network (CNN)-based features extracted by a pre-trained VGG19 network. The outputs from these two classifiers were fused by averaging the posterior probability of malignancy for each case to construct a fusion classifier. The performance evaluation for the three proposed classifiers was performed with five-fold cross-validation. The area under the receiver operating characteristic curve (AUC) was 0.68 (se = 0.04) for the ADC-based classifier, 0.74 (se = 0.03) for the CNN-based classifier, and 0.76 (se = 0.03) for the fusion classifier. The fusion classifier performed significantly better than the ADC-based classifier ( = 0.013). The CNN-based classifier failed to show statistically significant performance difference from the ADC-based classifier or the fusion classifier. The findings demonstrate promising performance of the proposed classifiers and the potential for DWI CADx as well as for the development of multiparametric CADx that incorporates information from both DWI and DCE-MRI in breast lesion classification.
The alert did not successfully save. Please try again later.
Qiyuan Hu, Heather M. Whitney, Alexandra Edwards, John Papaioannou, Maryellen L. Giger, "Radiomics and deep learning of diffusion-weighted MRI in the diagnosis of breast cancer," Proc. SPIE 10950, Medical Imaging 2019: Computer-Aided Diagnosis, 109504A (13 March 2019); https://doi.org/10.1117/12.2512626