Translator Disclaimer
Paper
8 March 2019 Cancer detection using hyperspectral imaging and evaluation of the superficial tumor margin variance with depth
Author Affiliations +
Abstract
Head and neck squamous cell carcinoma (SCCa) is primarily managed by surgical resection. Recurrence rates after surgery can be as high as 55% if residual cancer is present. In this study, hyperspectral imaging (HSI) is evaluated for detection of SCCa in ex-vivo surgical specimens. Several methods are investigated, including convolutional neural networks (CNNs) and a spectral-spatial variant of support vector machines. Quantitative results demonstrate that additional processing and unsupervised filtering can improve CNN results to achieve optimal performance. Classifying regions that include specular glare, the average AUC is increased from 0.73 [0.71, 0.75 (95% confidence interval)] to 0.81 [0.80, 0.83] through an unsupervised filtering and majority voting method described. The wavelengths of light used in HSI can penetrate different depths into biological tissue, while the cancer margin may change with depth and create uncertainty in the ground-truth. Through serial histological sectioning, the variance in cancer-margin with depth is also investigated and paired with qualitative classification heat maps using the methods proposed for the testing group SCC patients.
© (2019) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Martin Halicek, Himar Fabelo, Samuel Ortega, James V. Little, Xu Wang, Amy Y. Chen, Gustavo Marrero Callico, Larry L. Myers, Baran D. Sumer, and Baowei Fei "Cancer detection using hyperspectral imaging and evaluation of the superficial tumor margin variance with depth", Proc. SPIE 10951, Medical Imaging 2019: Image-Guided Procedures, Robotic Interventions, and Modeling, 109511A (8 March 2019); https://doi.org/10.1117/12.2512985
PROCEEDINGS
11 PAGES


SHARE
Advertisement
Advertisement
Back to Top