You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
15 March 2019Impact of imprinted labels on deep learning classification of AP and PA thoracic radiographs
Deep learning can be used to classify images to verify or correct DICOM header information. One situation where this is useful is in the classification of thoracic radiographs that were acquired anteroposteriorly (AP) or posteroanteriorly (PA). A convolutional neural network (CNN) was previously trained and showed a strong performance in the task of classifying between AP and PA radiographs, giving a 0.97 ± 0.005 AUC for an independent test set. However, 81% of the AP training set and 24% of the AP independent test set consisted of images with imprinted labels. To evaluate the effect of labels on training and testing of a CNN, the labels on the images used for training were removed by cropping. Then the CNN was retrained using the cropped images with the same training parameters as before. The retrained CNN was tested on the same independent test set and resulted in a 0.95 ± 0.007 AUC in the task of classifying between AP and PA radiographs. The p-value is 0.002 between the AUCs from the two networks, showing a statistically significant decrease in performance by the network trained on the cropped images. The decrease in performance may be due to the network being previously trained to recognize imprinted labels or due to relevant anatomy being cropped along with the label, however, the performance is still high and can be incorporated in clinical workflow.
The alert did not successfully save. Please try again later.
Jennie Crosby, Thomas Rhines, Clara Duan, Feng Li, Heber MacMahon, Maryellen Giger, "Impact of imprinted labels on deep learning classification of AP and PA thoracic radiographs
," Proc. SPIE 10954, Medical Imaging 2019: Imaging Informatics for Healthcare, Research, and Applications, 109540E (15 March 2019); https://doi.org/10.1117/12.2513026