You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
5 September 1989IR Clutter Partitioning For Matched Filter Design
An Infrared Search and Track (IRST) system may consist of a target detection pre-processor and a higher-level processor which evaluates candidate detections and forms tracking hypotheses. The detection signal processing must evaluate large numbers (tens of thousands) of pixels at the sensor frame rate and determine a small number (tens) of candidate detections. To be effective, detection processing must be able to detect targets at long ranges and extract targets from background clutter. While the higher-level process will be able to reject some false alarms and occasionally fill in missed targets, system performance will be critically degraded by poor detection capabilities. For most applications, such as airborne reconnaissance, size and weight considerations impose significant limitations on allowable computational complexity. Thus, the detection processing must be as accurate as possible while remaining fast and simple.
The alert did not successfully save. Please try again later.
John C. vom Lehn, David A. Langan, David S. K. Chan, "IR Clutter Partitioning For Matched Filter Design," Proc. SPIE 1096, Signal and Data Processing of Small Targets 1989, (5 September 1989); https://doi.org/10.1117/12.960343