You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
5 September 1989Synchronization And Fault Tolerance In A Distributed Tracker
Aerojet has developed a fault tolerant, distributed tracker under the Advanced Onboard Signal Processor (AOSP) Brassboard Demonstration Program for Rome Air Development Center (RADC). The AOSP Brassboard is a fault tolerant, loosely coupled, distributed network of microprocessors. The tracker function correlates several scans of Representative Return data (the input data comes from a scanning IR sensor.) to form tracks which are analyzed to estimate various parameters for the events being tracked. The distributed nature of the AOSP architecture and the stressing performance requirements of the application necessitated a detailed architectural design phase. The key part of the architectural design was the partitioning, which consisted of finding an acceptable allocation of application functions to processors. It was necessary to partition the tracker into several tasks because its stressing memory and throughput requirements could not be satisfied by a single processor from the AOSP Brassboard. The partitioning process had to take into account the extra processing and memory required by fault tolerance. This paper describes the approach to fault tolerance in the distributed tracker used in the AOSP demonstration program.
The alert did not successfully save. Please try again later.
David A. Leighton, Brian K. Hansen, "Synchronization And Fault Tolerance In A Distributed Tracker," Proc. SPIE 1096, Signal and Data Processing of Small Targets 1989, (5 September 1989); https://doi.org/10.1117/12.960356