You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
14 May 2019On generalization of deep learning recognizers in overhead imagery
In many applications, access to large quantities of labeled data is prohibitive due to its cost or lack of access to classes of interest. This problem is exacerbated in the context of specific subclasses and data types that are not easily accessible, such as remotes sensing data. The problem of limited data for specific classes of data is referred to as the low-shot or few-shot problem. Typically in the low-shot problem, there is a wealth of data from a source domain that is leveraged to train a convolutional feature extractor that is then applied to a target domain in innovative ways. In this work we apply this framework to the low-shot and fully sampled problem, in which the convolutional neural network is used as a feature extractor and paired with an alternate classifier. We evaluate the benefits of this approach in two contexts, a baseline problem, and limited training data. Additionally, we investigate the impact of loss function selection and sequestering of low-shot data on the classification performance of this approach. We present an applications of these techniques on the recent public xView dataset.
The alert did not successfully save. Please try again later.
G. Steven Goley, Brayden Osborne, Scott Kangas, Adam R. Nolan, "On generalization of deep learning recognizers in overhead imagery," Proc. SPIE 10988, Automatic Target Recognition XXIX, 109880K (14 May 2019); https://doi.org/10.1117/12.2519064