You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
14 May 2019Characterization of CNN classifier performance with respect to variation in optical contrast, using synthetic electro-optical data
Deep neural networks demonstrate high performance at classifying high-dimensional signals, but often fail to generalize to data that is different from the data they were trained on. In this paper, we investigate the resilience of convolutional neural networks (CNNs) to unforeseen operating conditions. Specifically, we empirically evaluate the ability of CNN models to generalize across changes in image contrast. Multiple models are trained on electro- optical (EO) or near-infrared (IR) data, and are evaluated in environments with degraded contrast compared to training. Experiments are replicated across varying architectures, including state-of-the-art classification models such as Resnet-152, and across both synthetic and measured datasets. In comparison to models trained and evaluated on identically-distributed data, these models can generalize well when contrast invariance is built up through data augmentation. Future work will investigate CNN ability to generalize to other changes in operating conditions.
The alert did not successfully save. Please try again later.
Christopher Menart, Colin Leong, Olga Mendoza-Schrock, Edmund Zelnio, "Characterization of CNN classifier performance with respect to variation in optical contrast, using synthetic electro-optical data," Proc. SPIE 10988, Automatic Target Recognition XXIX, 109880N (14 May 2019); https://doi.org/10.1117/12.2519494