You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
13 May 2019Deep learning in computational microscopy
We propose to use deep convolutional neural networks (DCNNs) to perform 2D and 3D computational imaging. Specifically, we investigate three different applications. We first try to solve the 3D inverse scattering problem based on learning a huge number of training target and speckle pairs. We also demonstrate a new DCNN architecture to perform Fourier ptychographic Microscopy (FPM) reconstruction, which achieves high-resolution phase recovery with considerably less data than standard FPM. Finally, we employ DCNN models that can predict focused 2D fluorescent microscopic images from blurred images captured at overfocused or underfocused planes.
The alert did not successfully save. Please try again later.
Thanh Nguyen, George Nehmetallah, Lei Tian, "Deep learning in computational microscopy," Proc. SPIE 10990, Computational Imaging IV, 1099007 (13 May 2019); https://doi.org/10.1117/12.2520089