Translator Disclaimer
12 June 2019 Material classification using convolution neural network (CNN) for x-ray based coded aperture diffraction system
Author Affiliations +
Transmission x-ray systems rely on the measured photon attenuation coefficients for material imaging and classification. While this approach provides high quality imaging capabilities and satisfactory object discrimination in most situations, it lacks material-specific information. For airport security, this can be a significant issue as false alarms require additional time to be resolved by human operators, which impacts bag throughput and airport operations. Orthogonal techniques such as X-ray Diffraction Tomography (XRDT) using a coded aperture provide complementary chemical/molecular signatures that can be used to identify a target material. The combination of noisy signals, variability in the XRD form factors for the same material, and the lack of a comprehensive material library limits the classification performance of the correlation based methods. Using simulated data to train a 1D Convolution Neural Network (CNN), we found relative improvements in classification accuracy compared to the correlation based approach we used previously. These improvement gains were cross-validated using the simulated data, and provided satisfactory detection results against real experimental data collected on a laboratory prototype.
Conference Presentation
© (2019) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
K. Brumbaugh, C. Royse, C. Gregory, K. Roe, J. A. Greenberg, and S. O. Diallo "Material classification using convolution neural network (CNN) for x-ray based coded aperture diffraction system", Proc. SPIE 10999, Anomaly Detection and Imaging with X-Rays (ADIX) IV, 109990B (12 June 2019);


Online medical symbol recognition using a Tablet PC
Proceedings of SPIE (January 24 2011)
Plural partial associations
Proceedings of SPIE (December 26 1996)

Back to Top