You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
27 March 2019Artifact reduction using segmentation constrained RPCA for CT
In this study, we aim to separate the ghost artifacts from the limited angle CT image by using Robust Principle Component Analysis (RPCA) and thus improve the reconstructed CT images. Conventionally, RPCA method separates the foreground and the background. Often, the background is assumed as static or quasi-static. When applied to limited angle CT images, the artifacts are considered as quasi-static background whereas the anatomical structures are considered foreground. Thus, RPCA is performed to segment the foreground from the background. Finally, different post-reconstruction de-noising parameters are applied to each foreground and background to remove the artifact effectively.
The alert did not successfully save. Please try again later.
Y. Kim, D. Choi, S. Lim, S. Cho, "Artifact reduction using segmentation constrained RPCA for CT," Proc. SPIE 11050, International Forum on Medical Imaging in Asia 2019, 110500H (27 March 2019); https://doi.org/10.1117/12.2523642