You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
27 March 2019Arteriovenous classification method using convolutional neural network for early detection of retinal vascular lesion
Early detection of hypertension is important because hypertension leads to stroke and cardiovascular diseases. Hypertensive changes in the retina are diagnosed by measuring the arteriovenous ratio near the optic disc. Therefore, classification of arteries and veins is necessary for ratio measurement, and previous studies classified them by using pixel-based features, such as pixel values, texture features, and shape features etc. For simplification of the classification process, a convolutional neural network (CNN) was applied in this study. For evaluation of the classification process, CNN was tested using centerlines extracted manually in this study. As a result of a fourfold cross-validation with 40 retinal images, the mean classification ratio of the arteries and veins was 98%. Furthermore, CNN was tested using the centerlines of blood vessels automatically extracted using the CNN-based method for testing the fully automatic method. CNN classified 90% of blood vessels into arteries and veins in the arteriovenous ratio measurement zone. CNN had 30 trained and 10 tested retinal images. This result may work as an important processing for abnormality detection.
The alert did not successfully save. Please try again later.
Hibiki Ikawa, Yuji Hatanaka, Wataru Sunayama, Kazunori Ogohara, Chisako Muramatsu, Hiroshi Fujita, "Arteriovenous classification method using convolutional neural network for early detection of retinal vascular lesion," Proc. SPIE 11050, International Forum on Medical Imaging in Asia 2019, 110501M (27 March 2019); https://doi.org/10.1117/12.2521528