Contents

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>v</td>
<td>Authors</td>
</tr>
<tr>
<td>vii</td>
<td>Conference Committees</td>
</tr>
<tr>
<td>ix</td>
<td>Introduction</td>
</tr>
</tbody>
</table>

SESSION 1 32ND INTERNATIONAL CONGRESS ON HIGH-SPEED IMAGING AND PHOTONICS

<table>
<thead>
<tr>
<th>Paper Reference</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>11051 02</td>
<td>Sanderson prism imaging of shock wave impact on thin elastic sheets [11051-3]</td>
</tr>
<tr>
<td>11051 03</td>
<td>High-speed imaging of high pressures produced by cavitation bubbles [11051-4]</td>
</tr>
<tr>
<td>11051 04</td>
<td>Development of a robust high-speed videogrammetric technique for the measurement of large-scale shaking table tests [11051-5]</td>
</tr>
<tr>
<td>11051 05</td>
<td>Application of ultra-high speed photography in identification of the dynamic tensile response of quasi-brittle materials [11051-6]</td>
</tr>
<tr>
<td>11051 06</td>
<td>Extending the recordable time in light-in-flight recording by holography [11051-7]</td>
</tr>
<tr>
<td>11051 07</td>
<td>Simultaneous time-resolved density-sensitive visualization of high-speed flows [11051-8]</td>
</tr>
<tr>
<td>11051 08</td>
<td>Time-resolved polychrome Mach-Zehnder interferometry of diffracting shock waves [11051-9]</td>
</tr>
<tr>
<td>11051 09</td>
<td>Curved jetting anomaly following conical shock wave reflection [11051-10]</td>
</tr>
<tr>
<td>11051 0A</td>
<td>Experimental investigation of oscillation modes and streaming of an acoustically actuated bubble in a microchannel [11051-11]</td>
</tr>
<tr>
<td>11051 0B</td>
<td>Over 100 million frames per second high speed global shutter CMOS image sensor [11051-12]</td>
</tr>
<tr>
<td>11051 0C</td>
<td>A sine-modulated high-intensity UV-LED light source for pressure-sensitive paint applications using fluorescence lifetime imaging technique [11051-13]</td>
</tr>
<tr>
<td>11051 0D</td>
<td>Visualization of spray droplets using phase retrieval holography [11051-14]</td>
</tr>
<tr>
<td>11051 0E</td>
<td>Ultrafast diagnostics of augmented filament ablation [11051-15]</td>
</tr>
<tr>
<td>11051 0F</td>
<td>Recent advances on in situ materials characterization using ultra high-speed x-ray imaging at The European Synchrotron – ESRF [11051-16]</td>
</tr>
</tbody>
</table>
Intense nickel-K-photon irradiation from weakly-ionized linear plasma x-ray source with a zinc reflector [11051-17]

High-speed tripe-energy x-ray photon counter using a room-temperature cadmium-telluride detector and its application to high-spatial-resolution low-dose computed tomography [11051-18]

High-speed dual-energy x-ray photon counter using a YAP(Ce)-Photomultiplier detector and its application to low-dose computed tomography [11051-19]

Time-gated SPAD camera with reconfigurable macropixels for LIDAR applications [11051-20]

3D deformation monitor with a distributed high-speed videogrammetry system based on shaking table experiment [11051-21]

Quantitative high-speed schlieren for a transonic flow field around a supercritical airfoil [11051-22]

Picosecond dissector with crossed sweep and optimization of picosecond dissector parameters [11051-23]

Focusing an electron-beam array with a multi-hole permanent magnet [11051-24]

High-speed x-ray imaging and 3D analysis of impact-formed fragments [11051-25]

Ultra-high speed photoelectric imaging system and applications [11051-26]

Investigation of the dynamic fragmentation process in ceramics by using ultra-high speed x-ray imaging with synchrotron radiation [11051-27]

Study of ratio temperature radiometry using a multi-spectrum camera [11051-28]
Authors

Numbers in the index correspond to the last two digits of the seven-digit citation identifier (CID) article numbering system used in Proceedings of SPIE. The first five digits reflect the volume number. Base 36 numbering is employed for the last two digits and indicates the order of articles within the volume. Numbers start with 00, 01, 02, 03, 04, 05, 06, 07, 08, 09, 0A, 0B...0Z, followed by 10-1Z, 20-2Z, etc.

Ando, T., 0N
Andreev, S., 0M
Awatsuji, Yasuhiro, 06
Chen, Peng, 04, 0K
Conca, E., 0J
Dorokhov, V., 0M
Duplan, Y., 0Q
Ekins, D., 0Q
Enomoto, Toshiyuki, 0G, 0H, 0I
Etoh, T. Goji, 08, 0N
Farhat, M., 03
Forquin, P., 05, 0Q
Gao, Sa, 04, 0K
Getmanov, Ya., 0M
Hagiwara, Osahiko, 0G, 0H, 0I
Hammer, B., 0L
Henne, Ulrich, 0C
Hiraki, Koju, 07
Hirooka, K., 0N
Holst, Gerhard A., 0C
Hu, Lintao, OK
Kähler, C. J., 0A
Kerrigan, Haley, 0E
Kleine, Harald, 07, 08
Komelkov, A., 0M
Kurkin, G., 0M
Kuroda, R., 0B
Kusachi, Shinya, 0G, 0H, 0I
Li, Jian, 0P
Li, Ze-Ren, 0P
Liu, Ning-Wen, 0P
Ludwikowski, Krzysztof, 0C
Lukić, B., 05, 0Q
Malutin, D., 0M
Matsukiyo, Hiroshi, 0G, 0H, 0I
Matsunaka, Atsushi, 06
Matveenko, A., 0M
Meshkov, O., 0M
Mitsui, Kenji, 0R
Moriyama, Hodaka, 0G, 0H, 0I
Moser, S., 0O
Munekata, Mizue, 0C
Murata, S., 0D
Mutsch, B., 0A
Nakatani, Y., 0D
Nau, S., 0O
Nishio, Kenzo, 06
Nonaka, Satoshi, 07
Obreschkow, D., 03
Oda, Yasuyuki, 0G, 0H, 0I
Olibinado, Margie P., 0F
Olivier, Herbert, 08, 0L
Paton, R. T., 09
Portaluppi, D., 0J
Rack, Alexander, 0F, 0Q
Richardson, Martin, 0E
Ries, M., 0M
Rossi, M., 0A
Rostami Fairchild, Shermineh, 0E
Saletti, D., 05, 0Q
Sato, Eiichi, 0G, 0H, 0I
Sato, Yuichi, 0G, 0H, 0I
Sawashima, Yu, 06
Schulz, J., 02
Shimonomura, K., 0N
Skews, B. W., 0Z
Smirnov, A., 0M
Stasicki, Boleslaw, 0C
Sugawa, S., 0B
Supponen, O., 03
Suzuki, M., 0B
Takamoto, Itsuki, 06
Tanaka, Y., 0D
Tong, Xiaohua, 04, 0K
Tsunoda, K., 0N
Usui, Hiroyuki, 0R
van Aswegen, D., 09
Villa, F., 0J
Volk, A., 0A
Vorobjev, N., 0M
Wang, Benkang, 04, 0K
Wang, Xu, 0P
Watanabe, Manabu, 0G, 0H, 0I
Wen, Wei-feng, 0P
Wickert, M., 0O
Xiao, Zheng-Fei, 0P
Yamaguchi, Satoshi, 0H
Yamanaka, Daiki, 06
Yorita, Daisuke, 0C
Zappa, F., 0J
Zarovsky, A., 0M
Zhao, Xin-Cai, 0P
Conference Committees

Conference Chairs

Michel Versluis, University of Twente (Netherlands)
Eleanor Stride, University of Oxford (United Kingdom)

Conference Advisory Board

Edoardo Charbon, EPFL, Lausanne (Switzerland)
Cameron Tropea, TU Darmstadt (Germany)
Hiroyuki Shiraga, Osaka University (Japan)
T. Goji Etoh, Ritsumeikan University (Japan)
Bao Li Yao, Xi’an Institute of Optics and Precision Mechanics (China)
Alexander Rack, ESRF Grenoble (France)
Keisuke Goda, University of Tokyo (Japan)

Program Committee

Yasunobu Arikawa, Osaka University (Japan)
Yasuhiro Awatsuji, Kyoto Institute of Technology (Japan)
Christopher Barty, University of California, Irvine (United States)
Piet de Moor, IMEC (Belgium)
Tobi Delbruck, Institute for Neuroinformatics Zurich (Switzerland)
Kamel Fezzaa, Argonne National Laboratory (United States)
Ryohei Funatsu, NHK (Japan)
Liang Gao, University of Illinois (USA)
Heinz Graafsm, DESY (Germany)
Hamid Hosano, Kumamoto University (Japan)
Kei-ichiro Kagawa, Shizuoka University (Japan)
Christian Kähler, UNIBW München (Germany)
Harald Kleine, University of New South Wales (Australia)
Rihito Kuroda, Tohuku University (Japan)
Hiroshi Liu, Chiba University (Japan)
Toshiharu Mizukaki, Tokai University (Japan)
Rajmund Mokso, Lund University (Sweden)
Herbert Olivier, Rheinisch-Westfälische Technische Hochschule Aachen (Germany)
Wolfgang Osten, Universität Stuttgart (Germany)
Pascal Picart, Ecole Nationale Superieure d’Ingenieurs du Man (France)
David Reinecke, Council for Scientific & Industrial Research (South Africa)
Martin Richardson, University of Central Florida (United States)
Mattias Richter, Lund University (Sweden)
Eiichi Sato, Iwate Medical University (Japan)
Graham Smith, AWE (United Kingdom)
Ronnie Shepherd, Lawrence Livermore (United States)
Beric Skews, University of Witwatersrand (South Africa)
Walter Snoeys, CERN (Switzerland)
Jeff Squier, Colorado School of Mines (United States)
Boleslaw Słasicki, DLR Goettingen (Germany)
Shu Takagi, University of Tokyo (Japan)
Kohsei Takehara, Kindai University (Japan)
Graham Taylor, University of Oxford (United Kingdom)
Kinko Tsuji, Shimadzu Europe (Germany)
James Walton, 4D Video (United States)
Matthias Wickert, Fraunhofer EMI (Germany)
Tao Ye, Beijing Synchrotron Radiation Facility (China)

Local Organisation Committee

Jacqueline van der Lek-Rohof, Congress Association Twente (Netherlands)
Martin Klein Schaarsberg, University of Twente (Netherlands)
Guillaume Lajoinie, University of Twente (Netherlands)
Tim Segers, University of Twente (Netherlands)
Introduction

It was our great pleasure to welcome delegates to The 32nd International Congress on High-Speed Imaging and Photonics (ICHSIP-32), co-organised by The Physics of Fluids group of the University of Twente and the BUBBL group of the University of Oxford. The Congress showcased the state of the art in high-speed imaging technology. In addition to new scientific discoveries and technical innovations presented in contributed talks, and a premier industry exhibition, cutting-edge ultra-fast imaging technologies were presented by leading scientists in a range of application fields from ultra-fast x-ray imaging, super-resolution microscopy, ultrafast AFM to 3D live cell imaging. We are delighted to present a selection of this work in these Proceedings. We would like to sincerely thank once again our organizing committee and scientific board and our sponsors for their invaluable support of the event.

Michel Versluis
Eleanor Stride