You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
21 June 2019Absolute angle measurement using dual-wavelength laser speckle for robotic manufacturing
A non-contact optical technique employing dual-wavelength laser speckle is investigated for absolute angle measurement. The approach uses the separation of the speckle patterns formed by two closely spaced illumination wavelengths to determine the angle of a surface. Autocorrelation is performed on a single exposure containing both speckle patterns to find their relative displacement, which is directly related to the absolute surface angle. This absolute angle determination offers an advantage over previous techniques using laser speckle that require a reference image. The underlying theory linking the speckle pattern displacement and the surface angle is presented, along with a proof-of-concept sensor. Experimental results from the sensor confirm the validity of the theory, with measurements demonstrating a mean difference from applied angles of 0.136°.
The alert did not successfully save. Please try again later.
Sam J. Gibson, Thomas O. H. Charrett, Ralph P. Tatam, "Absolute angle measurement using dual-wavelength laser speckle for robotic manufacturing," Proc. SPIE 11056, Optical Measurement Systems for Industrial Inspection XI, 110560K (21 June 2019); https://doi.org/10.1117/12.2525335