Pacific Rim Laser Damage 2019
Optical Materials for High-Power Lasers

Jianda Shao
Takahisa Jitsuno
Wolfgang Rudolph
Editors

19–22 May 2019
Qingdao, China

Sponsored by
SPIE
SIOM—Shanghai Institute of Optics and Fine Mechanics (China)

Organized by
Chinese Laser Press
Qingdao University (China)
Shandong Society for Optical Engineering (China)

Cooperating Organizations
Chinese Academy of Sciences
Qingdao Physical Society (China)
The National Natural Science Foundation of China

Published by
SPIE

Volume 11063
Contents

<table>
<thead>
<tr>
<th>SESSION 1</th>
<th>HIGH LASER DAMAGE RESISTANT COATINGS</th>
</tr>
</thead>
<tbody>
<tr>
<td>11063 02</td>
<td>Investigation on damage process of indium tin oxide film induced by 1064nm quasi-CW laser [11063-67]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SESSION 2</th>
<th>HIGH POWER LASER DAMAGE, UV THROUGH IR I</th>
</tr>
</thead>
<tbody>
<tr>
<td>11063 03</td>
<td>The fatigue effect of femtosecond laser-induced damage in high-reflective coatings at low repetition rate [11063-35]</td>
</tr>
<tr>
<td>11063 04</td>
<td>Laser conditioning mechanism in DKDP crystals analyzed by fluorescence and stimulated Raman scattering technique [11063-62]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SESSION 3</th>
<th>HIGH POWER LASER DAMAGE, UV THROUGH IR II</th>
</tr>
</thead>
<tbody>
<tr>
<td>11063 05</td>
<td>Investigation of laser induced air breakdown thresholds at 1064, 532, 355, 266 and 248nm [11063-19]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SESSION 4</th>
<th>CHARACTERIZATION TECHNIQUES AND MEASUREMENT PROTOCOLS I</th>
</tr>
</thead>
<tbody>
<tr>
<td>11063 06</td>
<td>Molecular simulation and ablation property on the laser-induced metal surface [11063-42]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SESSION 6</th>
<th>NONLINEAR LASER CRYSTALS</th>
</tr>
</thead>
<tbody>
<tr>
<td>11063 07</td>
<td>Laser-induced damage of nonlinear crystals in ultrafast, high-repetition-rate, mid-infrared optical parametric amplifiers pumped at 1 μm (Invited Paper) [11063-58]</td>
</tr>
<tr>
<td>11063 08</td>
<td>Optimizing the flow conditions of the horizontally oriented DKDP crystal by adding a stirring paddle [11063-47]</td>
</tr>
<tr>
<td>SESSION 8</td>
<td>CHARACTERIZATION TECHNIQUES AND MEASUREMENT PROTOCOLS II</td>
</tr>
<tr>
<td>-----------</td>
<td>--</td>
</tr>
<tr>
<td>11063 09</td>
<td>Laser-induced damage of high power systems: phenomenology and mechanisms (Invited Paper) [11063-15]</td>
</tr>
<tr>
<td>11063 0A</td>
<td>Analysis of optical damage in the final optics assembly induced by transport mirror defects [11063-22]</td>
</tr>
<tr>
<td>11063 0B</td>
<td>Removal of particle contaminations on sol-gel coated fused silica surface by laser cleaning [11063-31]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SESSION 10</th>
<th>CHARACTERIZATION TECHNIQUES AND MEASUREMENT PROTOCOLS III</th>
</tr>
</thead>
<tbody>
<tr>
<td>11063 0C</td>
<td>Structural defects in ultra-low laser absorption fused silica [11063-49]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>POSTER SESSION</th>
</tr>
</thead>
<tbody>
<tr>
<td>11063 0D</td>
</tr>
<tr>
<td>11063 0E</td>
</tr>
<tr>
<td>11063 0F</td>
</tr>
<tr>
<td>11063 0G</td>
</tr>
<tr>
<td>11063 0H</td>
</tr>
<tr>
<td>11063 0I</td>
</tr>
<tr>
<td>11063 0J</td>
</tr>
<tr>
<td>11063 0K</td>
</tr>
<tr>
<td>11063 0L</td>
</tr>
<tr>
<td>11063 0M</td>
</tr>
<tr>
<td>11063 0N</td>
</tr>
<tr>
<td>11063 0O</td>
</tr>
</tbody>
</table>
Laser damage and damage performance caused by near-field of final optics assembles for high power laser system [11063-54]

Laser damage on large aperture triple frequency crystal optics in high power laser system [11063-57]

Numerical investigation of growth model for laser-induced damage in optics under high power laser irradiation [11063-40]

Research on high precision combined processing technology of meter-level optical glass guideway [11063-13]

Study on 532nm and CO₂ laser processing of fused silica glass [11063-64]

Thermal deformation measurement of Al₂O₃ ceramic substrate based on radial basis function [11063-16]

Design and fabrication all-dielectric broadband reflection phase shifting mirror at near-infrared wavelengths for high intensity lasers [11063-30]

Equivalent explosion simulation model for studying the laser-induced damage process of KDP crystal [11063-52]

Experimentation on ablation of polymer plastics by CW laser for high voltage transmission lines [11063-8]

Fast measurement technique for obtaining the low damage threshold defects in a large aperture fused silica glass [11063-28]

Investigation of the high repetition rate picosecond laser induced damage properties of dielectric reflective optical coatings [11063-45]

Laser damage characteristics of the YAG ceramics [11063-1]

Mitigation of laser induced damage on dielectric mirrors in a robust way [11063-72]

Morphology evolution of doped phosphate glass in ion beam figuring [11063-66]

Preliminary application research of regression analysis in camouflage color matching [11063-17]

Removal of defect bound exciton in aged monolayer WS₂ by laser processing [11063-25]

Research on autonomous landing of UAV based on vision sequence image [11063-10]

Study on IR laser smoothing of ground surface on fused silica [11063-48]

Designing of converging stray light focal spot absorber in high power laser system [11063-34]
Research status and analysis of fifth-harmonic-generation for ~1μm laser [11063-56]

Simulation of heat distribution and thermal damage patterns of pulse laser for uterus using finite element analysis [11063-9]

The study on damage threshold of CCD’s black and white screen [11063-33]

Ablation characteristics of aluminum alloy and stainless steel induced by picosecond laser pulses [11063-44]

Third-order nonlinear optical response of enzothiazole derivative doped Polymethyl methacrylate C₁₈H₁₅N₃SFe [11063-26]

Study on magnetic properties of oriented silicon steel scribed by ultrafast laser [11063-53]

Study on optical constants of coatings at different temperatures [11063-60]

Study on surface roughness change of modified silicon carbide in ion beam polishing [11063-63]

Influence of laser output parameters on film damage threshold [11063-27]

Laser modulation simulation of micro-crack morphology evolution during chemical etching [11063-65]

A theory model on multi-shot laser-induced damage of multilayer mirrors in nanosecond [11063-20]
Authors

Numbers in the index correspond to the last two digits of the seven-digit citation identifier (CID) article numbering system used in Proceedings of SPIE. The first five digits reflect the volume number. Base 36 numbering is employed for the last two digits and indicates the order of articles within the volume. Numbers start with 00, 01, 02, 03, 04, 05, 06, 07, 08, 09, 0A, 0B...0Z, followed by 10-1Z, 20-2Z, etc.

An, Chaowei, 0R
Bai, Q. S., 06
Bi, Xiangli, 0R
Cao, Qiankun, 0J
Cao, Zhaoqiang, 02
Cao, Zhen, 04
Chen, Duanyang, 08
Chen, He, 0L, 0N, 0O
Chen, Jian, OK, 0Y
Chen, Liang-ming, 17
Chen, Mingjun, OK
Chen, Q., 1A
Chen, Ruiyi, 0D, 0F
Chen, Siling, 0L, 0N, 0O
Chen, Weidong, 07
Chen, Xiaojian, 0X
Chen, Yehui, 19
Chen, Zongwang, 1D
Cheng, Jian, 0K
Cheng, Jin, 0E
Cheng, Penghui, 0G, 0H
Cheng, Xiang'ai, 14
Chong, Liu, 0Q
Courchinoux, R., 09
Dai, Yifan, 0S
Deng, Wenyuan, 18
Donval, T., 09
Du, XiuRong, 0C, 0T
Duan, Wei, 0X
Fan, Wei, 11
Fan, Yuanyuan, 18
Feng, Simeng, 0X
Fu, Bo, 0T
Gao, Feng, 0X
Gao, Zhixing, 05
Guo, Baichen, 0M
Guo, Kesheng, 0D, 0F
Guo, Naihao, 0B
Guo, Pan, 0L, 0N, 0O
Guo, Xin, 18
Guo, Yajing, 0A, 0P, 0Q, 1B
Han, Lixuan, 05
Hao, Hao, 14
He, Hongbo, 04, 0D
He, Jiahuan, 1C
Heiner, Zsuzsanna, 07
Hong, Ruijin, 02
Hu, Bin, 0H
Hu, Dong-xia, 17
Hu, Guohang, 04, 10, 1E
Hu, Kaiwei, 08
Hu, Wengang, 15
Hu, Yue, 0I
Hu, Yueze, 14
Hua, Ning, 0C, 0T
Huang, Ming, 0Y
Jiang, Chenghui, 1C
Ji, Lailin, 0Q
Jiang, Anqi, 0M
Jiang, Tian, 14
Jiang, Xiaodong, 0B
Jiang, Xiuqing, 0P, 0Q
Jiang, Youen, 11
Jiao, Zhaoyang, 0A, 0P, 1B
Jin, Huiliang, 16
Ju, Jianjun, 13
Lamaignère, L., 09
Lei, X. Y., 0W
Li, Baowei, 0L, 0N, 0O
Li, Cheng, 03
Li, Chuang, 0G, 0H
Li, Dawei, 04, 10
Li, H., 1A
Li, Han, 14
Li, Jing, 05
Li, Lingqiao, 0Y
Li, Sensen, 0R
Li, Ting, 0L, 0N, 0O
Li, Wenqin, 1F
Li, Xia, 15
Li, Xiang, 13
Li, Xin, 0I
Li, XiYuan, 0U
Li, Xuechun, 11
Li, Y. H., 06
Li, Yaguo, 16
Li, Zhibin, 1H
Li, Zhuoyuan, 1D
Liang, Rongguang, 1H
Liao, Wei, 08
Lin, Yongping, 19
Liu, Chong, 0P, 0Q
Liu, Dong, 0Q
Liu, Ge, 13
Liu, Heng, 13
Liu, Hongjie, 17
Liu, Huasong, 1C
Liu, Qi, 0K
Liu, Qianghu, 0R
Liu, Shijie, 0Y
Liu, Wenfeng, 1B
Liu, Wenwen, 1D, 1I
Liu, Xiaofeng, 02, 04, 10
Liu, Yu, 14
Liu, Zhichao, 0K, 0W
Lu, Zhongwen, 0Z
Lv, Liang, 0V, 0Z
Ma, Hao, 03
Ma, Ping, 0V, 0Z
Ma, Xiaozhe, 0G, 0H
Ma, Yating, 14
Ma, YuHui, 0U
Meng, Xiaohui, 1F
Mero, Mark, 07
Miao, Runlin, 14
Miao, X. X., 06
Pan, Xiaoming, 1I
Pan, Xue, 1B
Parreault, R., 09
Peng, Liping, 02
Petrov, Valentin, 07
Pu, Lu, 0X
Pu, Yunti, 0V, 0Z
Qi, Hongji, 08
Qi, Hongjil, 08
Qi, Yan, 18
Qiao, Zhao, 0Z
Qin, Bosong, 1I
Ren, G., 1A
Roquin, N., 09
Rui, Xunbao, 0L, 0N, 0O
Shao, Jianda, 02, 03, 04, 08, 0D, 0F, 0Y, 10, 1E
Shao, Jingzheng, 0I
Shao, Yuchen, 03
Shen, R. Q., 06
Shi, Feng, 12
Song, Ci, 0S, 12
Song, Xuefu, 0C, 0T
Song, Yinglin, 1C
Su, Junhong, 0J, 1G
Sui, Yizhen, 14
Sui, Zhan, 0Y
Sun, Bingtao, 1I
Sun, Jian, 03
Sun, Mingying, 0A, 0P, 0Q, 1B
Sun, Xi-bo, 17
Sun, Yuancheng, 0C, 0T
Suo, Wenkai, 15
Tan, Ting, 16
Tang, Chen, 0U
Tang, Shuxing, 0Q
Tang, Yuxiang, 14
Tao, Chunxiang, 02
Tian, Ye, 12
Tie, Guipeng, 0S
Wang, Bin, 08
Wang, De-en, 17
Wang, Du, 16

Wang, Fang, 17
Wang, Haiyong, 1H
Wang, J., 0W
Wang, Jian, 0K, 16
Wang, Jingxuan, 0B
Wang, Li, 07
Wang, Linlin, 0U
Wang, Qian, 18
Wang, S. F., 0W
Wang, Shenghao, 0Y
Wang, Xi, 02, 0I
Wang, Xiaoyan, 1E
Wang, Y., 1A
Wang, Yanzhi, 0D, 0F
Wang, Yao, 04
Wang, Yonggang, 1F
Wei, Hui, 11
Wei, Ke, 14
Wu, Fan, 0R
Wu, Jiaqin, 0I
Wu, Laixin, 1D
Wu, Mengyuan, 0G
Wu, Rong, 1B
Wu, Zhuling, 0Y
Xiang, Xia, 0B
Xiao, Huapan, 1H
Xu, Hao, 13
Xu, Qiao, 0W, 16
Yan, Boxia, 18
Yan, Rongrong, 1G
Yan, Xisheng, 0R
Yang, Hao, 0K
Yang, Lin, 1D
Yang, Peimeng, 1I
Ye, Ning, 07
Yi, Kui, 0D, 0F, 1E
Yu, Na, 1H
Yuan, Zhigang, 16
Zhang, Dawei, 02
Zhang, F. H., 06
Zhang, Ge, 07
Zhang, Hangqiang, 05
Zhang, Hui, 08
Zhang, J. F., 0W
Zhang, Jian, 1D
Zhang, Jihua, 0B
Zhang, Jiyou, 1F
Zhang, K., 06
Zhang, Mingxiao, 0V, 0Z
Zhang, Qinghua, 16
Zhang, Simin, 1I
Zhang, Xiaojing, 0C, 0T
Zhang, Yan, 15
Zhang, Yanmin, 1C
Zhang, Yinzhong, 0L, 0N, 0O
Zhao, Jianli, 1G
Zhao, Linjie, 0K
Zhao, Longjiang, 0E
Zhao, Yuan'an, 02, 03, 04, 10, 1E
Zheng, Lili, 08
Zheng, Tian-ran, 17
Zhong, Yaoyu, 12
Zhou, Gang, 12
Zhou, Guanjun, 0R
Zhou, Junhu, 14
Zhou, Li, 11
Zhou, X., 1A
Zhou, Yi, 18
Zhu, Baoqiang, 0P, 0Q
Zhu, Jianqiang, 0A, 0P, 0Q
Zhu, Meiping, 0D, 0F
Zhu, R., 1A
Zong, Jie, 1C
Conference Committee

Conference Chairs
Jianda Shao, Shanghai Institute of Optics and Fine Mechanics (China)
Takahisa Jitsuno, Osaka University (Japan)
Wolfgang Rudolph, The University of New Mexico (United States)

Conference Secretariat
Meiping Zhu, Shanghai Institute of Optics and Fine Mechanics (China)
Jingping Li, Shanghai Institute of Optics and Fine Mechanics (China)
Jiaqi Yan, Chinese Laser Press (China)

Technical Program Committee
MJ Soileau, University of Central Florida (United States)
Efim A. Khazanov, Institute of Applied Physics (Russia)
Zhi M. Liao, Lawrence Livermore National Laboratory (United States)
Yongfeng Lu, University of Nebraska-Lincoln (United States)
Jean-Yves Natoli, Institut Fresnel (France)
Valdas Sirutkaitis, Vilnius University (Lithuania)
Christopher J. Stolz, Lawrence Livermore National Laboratory (United States)
Koji Sugioka, RIKEN (Japan)
Takunori Taira, Institute for Molecular Science (Japan)
Mauro Tonelli, Università di Pisa (Italy)
Zhuling Wu, ZC Optoelectronic Technologies Ltd. (China)
Qiao Xu, China Academy of Engineering Physics (China)
Ioan Dancus, Horia Hulubei National Institute of Physics and Nuclear Engineering (Romania)

Organizing Committee
Long Zhang, Shanghai Institute of Optics and Fine Mechanics (China)
Ya Cheng, Shanghai Institute of Optics and Fine Mechanics (China)
Yaping Dai, China Academy of Engineering Physics (China)
Hongbo He, Shanghai Institute of Optics and Fine Mechanics (China)
Guixue Huang, National High Technology Research and Development (China)
Yuxin Leng, Shanghai Institute of Optics and Fine Mechanics (China)
Liejia Qian, Shanghai Jiao Tong University (China)
Kui Yi, Shanghai Institute of Optics and Fine Mechanics (China)
Weijing Kong, Qingdao University (China)
Session Chairs

1. High Laser Damage Resistant Coatings
 - Jianda Shao, Shanghai Institute of Optics and Fine Mechanics (China)
 - Luke Emmert, The University of New Mexico (United States)

2. High Power Laser Damage, UV through IR I
 - Takahisa Jitsuno, Osaka University (Japan)
 - Lili Hu, Shanghai Institute of Optics and Fine Mechanics (China)

3. High Power Laser Damage, UV through IR II
 - Marc Sentis, Institut de Physique, CNRS (France)
 - Efim Khazanov, Institute of Applied Physics (Russian Federation)

 - Zhouling Wu, ZC Optoelectronic Technologies, Ltd. (China)
 - Hümbet Nasibli, TÜBİTAK National Metrology Institute (Turkey)

5. Laser Ablation and Laser Machining
 - Enam A. Chowdhury, The Ohio State University (United States)
 - Yuxin Leng, Shanghai Institute of Optics and Fine Mechanics (China)

6. Nonlinear Laser Crystals
 - Marco Jupé, Laser Zentrum Hannover e.V. (Germany)
 - Dingyuan Tang, Nanyang Technological University (Singapore)

7. Laser Ceramics
 - Mark Mero, Max-Born-Institut für Nichtlineare Optik und Kurzzeitspektroskopie (Germany)
 - Ioan Dancus, Horia Hulubei National Institute of Physics and Nuclear Engineering (Romania)

8. Characterization Techniques and Measurement Protocols II
 - Marcus Trost, Fraunhofer-Institut für Angewandte Optik und Feinmechanik IOF (Germany)
 - Ramiz Hamid, TÜBİTAK National Metrology Institute (Turkey)

9. Optical Glasses and Fibers
 - Valdas Sirutkaitis, Vilnius University (Lithuania)
 - Jiang Li, Shanghai Institute of Ceramics (China)

10. Characterization Techniques and Measurement Protocols III
 - Laurent Lamagnère, Commissariat à l’Énergie Atomique et aux Energies Alternatives (France)