Translator Disclaimer
6 May 2019 Tiny face hallucination via boundary equilibrium generative adversarial networks
Author Affiliations +
Proceedings Volume 11069, Tenth International Conference on Graphics and Image Processing (ICGIP 2018); 110693M (2019) https://doi.org/10.1117/12.2524361
Event: Tenth International Conference on Graphic and Image Processing (ICGIP 2018), 2018, Chengdu, China
Abstract
It is known that actual performance of most previous face hallucination approaches will drop dramatically as a very low-resolution tiny face is provided. Inspired by the latest progress in deep unsupervised learning, this paper works on tiny faces of size 16×16 pixels and magnifies them into their 8× upsampling ones by exploiting the boundary equilibrium generative adverarial networks (BEGAN). Besides imposing a pixel-wise L2 regularization term to the generative model, it is found that our targeted auto-encoding generator with residual blocks and skip connections is a key component for BEGAN achieving state-of-the-art hallucination performance. The cropped CelebA face dataset is preliminarily used in our experiments. The results demonstrate that the proposed approach is not only of fast and stable convergence, but also robust to pose, expression, illuminance and occluded variations.
© (2019) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Wen-Ze Shao, Jing-Jing Xu, Long Chen, Qi Ge, Li-Qian Wang, Bing-Kun Bao, and Hai-Bo Li "Tiny face hallucination via boundary equilibrium generative adversarial networks", Proc. SPIE 11069, Tenth International Conference on Graphics and Image Processing (ICGIP 2018), 110693M (6 May 2019); https://doi.org/10.1117/12.2524361
PROCEEDINGS
11 PAGES


SHARE
Advertisement
Advertisement
RELATED CONTENT


Back to Top