The papers in this volume were part of the technical conference cited on the cover and title page. Papers were selected and subject to review by the editors and conference program committee. Some conference presentations may not be available for publication. Additional papers and presentation recordings may be available online in the SPIE Digital Library at SPIEDigitalLibrary.org.

The papers reflect the work and thoughts of the authors and are published herein as submitted. The publisher is not responsible for the validity of the information or for any outcomes resulting from reliance thereon.

Please use the following format to cite material from these proceedings:


ISSN: 0277-786X
ISSN: 1996-756X (electronic)
ISBN: 9781510628373

Published by
SPIE
P.O. Box 10, Bellingham, Washington 98227-0010 USA
Telephone +1 360 676 3290 (Pacific Time) · Fax +1 360 647 1445
SPIE.org
Copyright © 2019, Society of Photo-Optical Instrumentation Engineers.

Copying of material in this book for internal or personal use, or for the internal or personal use of specific clients, beyond the fair use provisions granted by the U.S. Copyright Law is authorized by SPIE subject to payment of copying fees. The Transactional Reporting Service base fee for this volume is $18.00 per article (or portion thereof), which should be paid directly to the Copyright Clearance Center (CCC), 222 Rosewood Drive, Danvers, MA 01923. Payment may also be made electronically through CCC Online at copyright.com. Other copying for republication, resale, advertising or promotion, or any form of systematic or multiple reproduction of any material in this book is prohibited except with permission in writing from the publisher. The CCC fee code is 0277-786X/19/$18.00.

Printed in the United States of America.

Publication of record for individual papers is online in the SPIE Digital Library.

SPIEDigitalLibrary.org

**Paper Numbering:** Proceedings of SPIE follow an e-first publication model. A unique citation identifier (CID) number is assigned to each article at the time of publication. Utilization of CIDs allows articles to be fully citable as soon as they are published online, and connects the same identifier to all online and print versions of the publication. SPIE uses a seven-digit CID article numbering system structured as follows:

- The first five digits correspond to the SPIE volume number.
- The last two digits indicate publication order within the volume using a Base 36 numbering system employing both numerals and letters. These two-number sets start with 00, 01, 02, 03, 04, 05, 06, 07, 08, 09, 0A, 0B ... 0Z, followed by 10-1Z, 20-2Z, etc. The CID Number appears on each page of the manuscript.
## Contents

<table>
<thead>
<tr>
<th>SESSION 1</th>
<th>DEEP LEARNING WITHIN CT RECONSTRUCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>11072 02</td>
<td>A hierarchical approach to deep learning and its application to tomographic reconstruction (DL-1.1)</td>
</tr>
<tr>
<td>11072 03</td>
<td>Quality-guided deep reinforcement learning for parameter tuning in iterative CT reconstruction (DL-1.2)</td>
</tr>
<tr>
<td>11072 04</td>
<td>A machine learning approach to construct a tissue-specific texture prior from previous full-dose CT for Bayesian reconstruction of current ultralow-dose CT images (DL-1.3)</td>
</tr>
<tr>
<td>11072 05</td>
<td>Low-dose CT reconstruction assisted by a global CT image manifold prior (DL-1.4)</td>
</tr>
<tr>
<td>11072 06</td>
<td>Learned primal-dual reconstruction for dual energy computed tomography with reduced dose (DL-1.5)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SESSION 2</th>
<th>ITERATIVE RECONSTRUCTION IN CT</th>
</tr>
</thead>
<tbody>
<tr>
<td>11072 07</td>
<td>Statistical iterative reconstruction for spectral phase contrast CT (CT-1.1)</td>
</tr>
<tr>
<td>11072 08</td>
<td>Application of Proximal Alternating Linearized Minimization (PALM) and inertial PALM to dynamic 3D CT (CT-1.2)</td>
</tr>
<tr>
<td>11072 09</td>
<td>Convergence criterion for MBIR based on the local noise-power spectrum: Theory and implementation in a framework for accelerated 3D image reconstruction with a morphological pyramid (CT-1.3)</td>
</tr>
<tr>
<td>11072 0A</td>
<td>Contrast-medium anisotropy-aware tensor total variation model for robust cerebral perfusion CT reconstruction with weak radiation: a preliminary study (CT-1.4)</td>
</tr>
</tbody>
</table>
Clinical study of soft-tissue contrast resolution in cone-beam CT of the head using multi-resolution PWLS with multi-motion correction and an electronic noise model (CT-1.5)

Adaptive smoothing algorithms for MBIR in CT applications (CT-1.6)

**SESSION 3  CT CORRECTIONS**

Motion gradients for epipolar consistency (CT-2.1)

A motion estimation and compensation algorithm for 4D CBCT of the abdomen (CT-2.2)

A preliminary study on explicit compensation for the non-linear-partial-volume effect in CT (CT-2.3)

Reduction of irregular view-sampling artifacts in a stationary gantry CT scanner (CT-2.4)

Reduction of metal artefacts in CBCT caused by needles crossing the FOV border (CT-2.5)

**SESSION 4  PET RECONSTRUCTION**

Simultaneous micro-PET imaging of F-18 and I-124 with correction for triple-random coincidences (EM-1.1)

Application of the pseudoinverse for real-time 3D PET image reconstruction (EM-1.2)

Non-TOF fourier-based analytic reconstruction from TOF histo-projections for high resolution TOF scanners (EM-1.3)

Preliminary investigation of optimization-based image reconstruction for TOF PET with sparse configurations (EM-1.4)

Rapid construction of system response matrix based on geometric symmetries for the quad-head PET system (EM-1.5)

Extension of emission EM look-alike algorithms to Bayesian algorithms (EM-1.6)

**SESSION 5  DEEP LEARNING WITHIN PET RECONSTRUCTION**

MAPEM-Net: an unrolled neural network for Fully 3D PET image reconstruction (DL-2.1)

Generative adversarial networks based regularized image reconstruction for PET (DL-2.2)
### SESSION 6  CT RECONSTRUCTION AND IMAGING

<table>
<thead>
<tr>
<th>Session</th>
<th>Title</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>11072 OT</td>
<td>Theoretically-exact filtered-backprojection reconstruction from real data on the line-ellipse-line trajectory (CT-3.1)</td>
<td></td>
</tr>
<tr>
<td>11072 OU</td>
<td>Optimization of cone-beam CT scan orbits for cervical spine imaging (CT-3.2)</td>
<td></td>
</tr>
<tr>
<td>11072 OV</td>
<td>Low frequency recovery in 16cm coverage axial multi-detector computed tomography (CT-3.3)</td>
<td></td>
</tr>
<tr>
<td>11072 OW</td>
<td>Performance analysis for nonlinear tomographic data processing (CT-3.4)</td>
<td></td>
</tr>
<tr>
<td>11072 OX</td>
<td>Simulating lower-dose scans from an available CT scan (CT-3.5)</td>
<td></td>
</tr>
<tr>
<td>11072 OY</td>
<td>Optimized conversion from CT numbers to proton relative stopping power based on proton radiography and scatter corrected cone-beam CT images (CT-3.6)</td>
<td></td>
</tr>
</tbody>
</table>

### SESSION 7  SPECTRAL CT / MATERIAL DECOMPOSITION

<table>
<thead>
<tr>
<th>Session</th>
<th>Title</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>11072 OZ</td>
<td>Local response prediction in model-based CT material decomposition (CT-4.1)</td>
<td></td>
</tr>
<tr>
<td>11072 TO</td>
<td>Image-domain multi-material decomposition using a union of cross-material models (CT-4.2)</td>
<td></td>
</tr>
<tr>
<td>11072 T1</td>
<td>Optimized spatial-spectral CT for multi-material decomposition (CT-4.3)</td>
<td></td>
</tr>
<tr>
<td>11072 T2</td>
<td>Photon-counting Spectral CT with De-noised Principal Component Analysis (PCA) (CT-4.4)</td>
<td></td>
</tr>
<tr>
<td>11072 T3</td>
<td>Known-component model-based material decomposition for dual energy imaging of bone compositions in the presence of metal implant (CT-4.5)</td>
<td></td>
</tr>
</tbody>
</table>

### SESSION 8  SPECT IMAGING

<table>
<thead>
<tr>
<th>Session</th>
<th>Title</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>11072 T4</td>
<td>Investigation of a Monte Carlo simulation and an analytic-based approach for modeling the system response for clinical I-123 brain SPECT imaging (EM-2.1)</td>
<td></td>
</tr>
<tr>
<td>Session</td>
<td>Title</td>
<td>Code</td>
</tr>
<tr>
<td>---------</td>
<td>----------------------------------------------------------------------</td>
<td>--------</td>
</tr>
<tr>
<td>9</td>
<td>Preliminary investigation of AdaptiSPECT-C designs with square or square and hexagonal detectors employing direct and oblique apertures</td>
<td>EM-2.2</td>
</tr>
<tr>
<td>10</td>
<td>GPU-accelerated generic analytic simulation and image reconstruction platform for multi-pinhole SPECT systems</td>
<td>EM-2.3</td>
</tr>
<tr>
<td></td>
<td>SESSION 9 OTHER NOVEL APPLICATIONS AND APPROACHES</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Exact inversion of an integral transform arising in passive detection of gamma-ray sources with a Compton camera</td>
<td>OT-1</td>
</tr>
<tr>
<td>18</td>
<td>Task-driven acquisition in anisotropic x-ray dark-field tomography</td>
<td>OT-2</td>
</tr>
<tr>
<td>19</td>
<td>A step toward a clinically viable ABI phase-contrast imaging: double emission line artifacts correction</td>
<td>OT-3</td>
</tr>
<tr>
<td>1A</td>
<td>Registration methods to enable augmented reality-assisted 3D image-guided interventions</td>
<td>OT-4</td>
</tr>
<tr>
<td></td>
<td>SESSION 10 DEEP LEARNING FOR IMAGE DENOISING AND CHARACTERIZATION</td>
<td></td>
</tr>
<tr>
<td>1B</td>
<td>Feature aware deep learning CT image reconstruction</td>
<td>DL-3.1</td>
</tr>
<tr>
<td>1C</td>
<td>Low-dose CT image denoising without high-dose reference images</td>
<td>DL-3.2</td>
</tr>
<tr>
<td>1D</td>
<td>Deep learning based adaptive filtering for projection data noise reduction in x-ray computed tomography</td>
<td>DL-3.3</td>
</tr>
<tr>
<td>1E</td>
<td>Population and individual information guided PET image denoising using deep neural network</td>
<td>DL-3.4</td>
</tr>
<tr>
<td>1F</td>
<td>Comparison of deep learning and human observer performance for lesion detection and characterization</td>
<td>DL-3.5</td>
</tr>
<tr>
<td></td>
<td>SESSION 11 QUANTITATIVE METHODS IN PET</td>
<td></td>
</tr>
<tr>
<td>1G</td>
<td>A linear estimator for timing calibration in time-of-flight PET</td>
<td>EM-3.1</td>
</tr>
<tr>
<td>1H</td>
<td>Joint reconstruction of activity and attenuation with autonomous scaling for time-of-flight PET</td>
<td>EM-3.2</td>
</tr>
<tr>
<td>1I</td>
<td>Dynamic PET imaging with the generalized method of moments</td>
<td>EM-3.3</td>
</tr>
<tr>
<td>1J</td>
<td>Multiresolution spatiotemporal mechanical model of the heart as a prior to constrain the solution for 4D models of the heart</td>
<td>EM-3.4</td>
</tr>
<tr>
<td>11072 1K</td>
<td>Analysis of scatter artifacts in cone-beam CT due to scattered radiation of metallic objects (P-1.1)</td>
<td></td>
</tr>
<tr>
<td>11072 1L</td>
<td>CTL: modular open-source C++-library for CT-simulations (P-1.2)</td>
<td></td>
</tr>
<tr>
<td>11072 1M</td>
<td>Photon-counting CBCT iterative reconstruction for adaptive proton therapy (P-1.3)</td>
<td></td>
</tr>
<tr>
<td>11072 1N</td>
<td>A fast gradient-based algorithm for image reconstruction in inverse geometry CT architecture with sparse distributed sources (P-1.4)</td>
<td></td>
</tr>
<tr>
<td>11072 1O</td>
<td>Clipping-induced bias correction for low-dose CT imaging (P-1.5)</td>
<td></td>
</tr>
<tr>
<td>11072 1P</td>
<td>Multislice anthropomorphic model observer for detectability evaluation on breast cone beam CT images (P-1.6)</td>
<td></td>
</tr>
<tr>
<td>11072 1Q</td>
<td>Low-dose photon counting CT reconstruction bias reduction with multi-energy alternating minimization algorithm (P-1.7)</td>
<td></td>
</tr>
<tr>
<td>11072 1R</td>
<td>Noise reduction in photon-counting CT using frequency-dependent optimal weighting (P-1.8)</td>
<td></td>
</tr>
<tr>
<td>11072 1S</td>
<td>Reduction of beam hardening induced metal artifacts using consistency conditions (P-1.9)</td>
<td></td>
</tr>
<tr>
<td>11072 1T</td>
<td>Beam hardening correction using pair-wise fan beam consistency conditions (P-1.10)</td>
<td></td>
</tr>
<tr>
<td>11072 1U</td>
<td>Bone sparsity model for computed tomography image reconstruction (P-1.11)</td>
<td></td>
</tr>
<tr>
<td>11072 1V</td>
<td>Edge-masked CT image reconstruction from limited data (P-1.12)</td>
<td></td>
</tr>
<tr>
<td>11072 1W</td>
<td>Real-time GPU implementation of a weighted filtered back-projection algorithm for stationary gantry CT reconstruction (P-1.13)</td>
<td></td>
</tr>
<tr>
<td>11072 1X</td>
<td>Toward quantitative short-scan cone beam CT using shift-invariant filtered-backprojection with equal weighting and image domain shading correction (P-1.14)</td>
<td></td>
</tr>
<tr>
<td>11072 1Y</td>
<td>Double-helix trajectory for image guided radiation therapy: geometry and image reconstruction (P-1.15)</td>
<td></td>
</tr>
<tr>
<td>11072 1Z</td>
<td>Combination of CT motion simulation and deep convolutional neural networks with transfer learning to recover Agatston scores (P-1.16)</td>
<td></td>
</tr>
<tr>
<td>11072 20</td>
<td>A sinogram inpainting method based on generative adversarial network for limited-angle computed tomography (P-1.17)</td>
<td></td>
</tr>
<tr>
<td>11072 21</td>
<td>Bone induced artifacts elimination using two-step convolutional neural network (P-1.18)</td>
<td></td>
</tr>
</tbody>
</table>
A deep learning approach for dual-energy CT imaging using a single-energy CT data
(P-1.19)

Learned digital subtraction angiography (Deep DSA): method and application to lower extremities
(P-1.20)

Low-dose cerebral CT perfusion restoration via non-local convolution neural network: initial study
(P-1.21)

Direct image reconstruction from raw measurement data using an encoding transform refinement-and-scaling neural network (P-1.22)

A hybrid ring artifact reduction algorithm based on CNN in CT images (P-1.23)

GCC-based extrapolation of truncated CBCT data with dimensionality-reduced extrapolation models (P-1.24)

Non-uniformity correction for photon-counting detectors using double GANs (P-1.25)

Synthesize monochromatic images in spectral CT by dual-domain deep learning (P-1.26)

Green's one-step-late algorithm dose not work for SPECT with attenuation correction (P-1.27)

Super-iterative image reconstruction in PET (P-1.28)

Reconstruction performance for long axial field-of-view PET scanners with large axial gaps (P-1.29)

Versatile regularisation toolkit for iterative image reconstruction with proximal splitting algorithms (P-1.30)

Multi-streaming and multi-GPU optimization for a matched pair of Projector and Backprojector (P-1.31)

Bulk motion detection and correction using list-mode data for cardiac PET imaging (P-1.32)

POSTER SESSION II

Truncation artifacts caused by the patient table in polyenergetic statistical reconstruction on real C-arm CT data (P-2.1)

K-edge imaging visualization of multi-material decomposition in CT using virtual monoenergetic images (P-2.2)

Scatter correction using pair-wise fan beam consistency conditions (P-2.3)
<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>2J</td>
<td>Enhanced spatial resolution in cone beam X-ray luminescence computed tomography using primal-dual Newton conjugate gradient method</td>
<td>(P-2.4)</td>
</tr>
<tr>
<td>2K</td>
<td>Linear interpolation based structure preserved metal artifact reduction in x-ray computed tomography</td>
<td>(P-2.5)</td>
</tr>
<tr>
<td>2L</td>
<td>Curvature constraint based image reconstruction for limited-angle computed tomography</td>
<td>(P-2.6)</td>
</tr>
<tr>
<td>2M</td>
<td>Fast ordered subsets Chambolle-Pock algorithm for CT reconstruction</td>
<td>(P-2.7)</td>
</tr>
<tr>
<td>2N</td>
<td>Attenuation correction for x-ray fluorescence computed tomography (XFCT) utilizing transmission CT image</td>
<td>(P-2.8)</td>
</tr>
<tr>
<td>2O</td>
<td>Multi-energy computed tomography reconstruction using an average image induced low-rank tensor decomposition with spatial-spectral total variation regularization</td>
<td>(P-2.9)</td>
</tr>
<tr>
<td>2P</td>
<td>Statistical iterative material image reconstruction with patch based enhanced 3DTV regularization for photon counting CT</td>
<td>(P-2.10)</td>
</tr>
<tr>
<td>2Q</td>
<td>Reducing high-density object artifacts with iterative image reconstruction in digital tomosynthesis</td>
<td>(P-2.11)</td>
</tr>
<tr>
<td>2R</td>
<td>Artifacts reduction method in 4DCBCT based on a weighted demons registration framework</td>
<td>(P-2.12)</td>
</tr>
<tr>
<td>2S</td>
<td>A field of view based metal artifact reduction method with the presence of data truncation</td>
<td>(P-2.13)</td>
</tr>
<tr>
<td>2T</td>
<td>Inverse-geometry CT with linearly distributed source and detector: stationary configuration and direct filtered-backprojection reconstruction</td>
<td>(P-2.14)</td>
</tr>
<tr>
<td>2U</td>
<td>Efficient nullspace-constrained modifications of incompletely sampled CT images</td>
<td>(P-2.15)</td>
</tr>
<tr>
<td>2V</td>
<td>Dynamic angle selection for few-view X-ray inspection of CAD based objects</td>
<td>(P-2.16)</td>
</tr>
<tr>
<td>2W</td>
<td>Non-uniformity correction for MARS photon-counting detectors</td>
<td>(P-2.17)</td>
</tr>
<tr>
<td>2X</td>
<td>Evaluation of image quality of a deep learning image reconstruction algorithm</td>
<td>(P-2.18)</td>
</tr>
<tr>
<td>2Y</td>
<td>A novel transfer learning framework for low-dose CT</td>
<td>(P-2.19)</td>
</tr>
<tr>
<td>2Z</td>
<td>Quadratic autoencoder for low-dose CT denoising</td>
<td>(P-2.20)</td>
</tr>
<tr>
<td>30</td>
<td>Reconstructing interior transmission tomographic images with an offset-detector using a deep-neural-network</td>
<td>(P-2.21)</td>
</tr>
<tr>
<td>31</td>
<td>Information retrieval in x-ray imaging with grating interferometry using convolution neural network</td>
<td>(P-2.22)</td>
</tr>
</tbody>
</table>
A spatial information incorporation method for irregular sampling CT based on deep learning (P-2.23)

Projection super-resolution based on convolutional neural network for computed tomography (P-2.24)

Medical (CT) image generation with style (P-2.25)

Awake preclinical brain PET imaging based on point sources (P-2.26)

EM-ML algorithm based on continuous-to-continuous model for PET (P-2.27)

Parametric image estimation using Residual simplified reference tissue model (P-2.28)

Virtual clinical trials using 3D PET imaging (P-2.29)

Fiber assignment by continuous tracking for parametric fiber reinforced polymer reconstruction (P-2.30)

elsa - an elegant framework for tomographic reconstruction (P-2.31)

Spectral CT reconstruction algorithm based on adaptive tight frame wavelet and total variation (P-2.32)

Study on spectral CT material decomposition via deep learning (P-2.33)
Authors

Numbers in the index correspond to the last two digits of the seven-digit citation identifier (CID) article numbering system used in Proceedings of SPIE. The first five digits reflect the volume number. Base 36 numbering is employed for the last two digits and indicates the order of articles within the volume. Numbers start with 00, 01, 02, 03, 04, 05, 06, 07, 08, 09, 0A, 0B..0Z, followed by 10-1Z, 20-2Z, etc.

Abdurahman, Shiras, 1S, 1T, 2I
Akabori, Kiyotaka, 1M
Akino, Naruomi, 1B
Alpert, Nathaniel M., 2F
Arias-Valcayo, Fernando, 35
Ashton, Alun W., 2D
Asma, Evren, 0Q
Auer, Benjamin, 14, 15, 16
Aygun, N., 0B
Baek, Jongduk, 1P, 2S
Bai, Chuanyong, 1Y
Baikejiang, Reheman, 0P
Bannasch, Sebastian, 2U
Basham, Mark, 2D
Berker, Yannick, 0S
Betcke, Marta, 08
Beuing, Oliver, 27, 2G
Bian, Zhaoqing, 0A, 24, 2O, 2P
Bismark, Richard N. K., 1L, 2G
Blankemeyer, Eric, 0I
Brambilla, Andrea, 1N
Brankov, Jovan G., 19
Brown, Kevin M., 1O
Butler, Anthony P., 2W
Byrd, Darrin, 38
Cai, Ailong, 20, 33
Cao, Q., 13
Cao, Qingjie, 32
Cao, Wenjing, 0V
Capostagno, S., 09
Carlin, Sean D., 0I
Catana, Ciprian, 0R
Caudevilla, Oriol, 19
Chang, Shaojie, 26
Chapdelaine, Camille, 2E
Chen, Buxin, 0F, 0L
Chen, Liyuan, 03
Chen, Ping, 38
Chen, Xi, 26
Chen, Yang, 22
Chen, Zhiqiang, 29, 2N, 2T
Cheng, Jian, 0M
Cheng, Kai, 22
Cheslerean Boghiu, Theodor, 18
Cho, Seunghyong, 2Q, 30
Choi, Seungwon, 2S
Churchill, Victor, 1V
Cierniak, Robert, 36
Cui, Jianan, 1E
Dai, Xianjin, 22
Daube-Witherspoon, Margaret E., 2C
De Beenhouwer, Jan, 14, 2V, 39
De Man, Bruno, 02, 06
De Man, Ruben, 1F
Defrise, Michel, 1G
Deng, Xiaojian, 2M
Desco, M., 35
Djurabekova, Nargiza, 08
Dobosz, Piotr, 36
Duan, Jiayu, 26
Duff, Martine C., 1U
Ehhardt, Matthias J., 2D
Ehtiatl, T., 09
El Fakhri, Georges, 0O, 2F
Eberfeld, Tim, 39
Elhamiasl, Masoud, 0X
Eulig, Elias, 23
Fan, Fenglei, 22, 2Z
Fan, Jiahua, 2X
Fang, Wei, 28
Feng, Chuanqing, 29
Feng, Peng, 3C
Foos, D., 0B
Fournier, Clarisse, 1N
Frank, David, 3A
Frenkel, Michael, 0E, 0G
Frenkel, Michael, 1W
Frisch, Robert, 1K, 1L, 1S, 1T, 27, 2I, 2U
Fu, Jianwei, 21
Fu, Lin, 02
Furenlid, Lars R., 14, 15, 16
Gac, Nicolas, 2E
Gade, Terence, 1A
Gagnon, Daniel, 1Y
Gall, Pablo, 0J, 2B, 35
Gang, Grace J., 0W, 1F
Gao, Hewei, 2T, 31
Gao, Peng, 22, 2J
Gao, Yongfeng, 04
Gelb, Anne, 1V
Georgin, Nicolas, 2E
Gettin, Matthew, 2W
Goldberg, Andrew, 08
Gong, Kuang, 0O, 0P, 0R, 1E
Gonzalez, Yesenia, 03
Grass, Michael, 0H
Gregor, Jens, 25
Grzybowski, Andrzej, 36
<table>
<thead>
<tr>
<th>Name</th>
<th>Code(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yoon, Huisu</td>
<td>2K</td>
</tr>
<tr>
<td>Yoon, Seongjin</td>
<td>0E, 0G</td>
</tr>
<tr>
<td>Yoon, Seongjin</td>
<td>1W</td>
</tr>
<tr>
<td>Yu, Zhicong</td>
<td>0V, 1Y</td>
</tr>
<tr>
<td>Yu, Zhou</td>
<td>1B, 1D</td>
</tr>
<tr>
<td>Yuan, Nimu</td>
<td>1C</td>
</tr>
<tr>
<td>Yue, Meghan</td>
<td>2X</td>
</tr>
<tr>
<td>Žabićć, Stanislav</td>
<td>0V</td>
</tr>
<tr>
<td>Zbijewski, Wojciech</td>
<td>0B, 0U, 13</td>
</tr>
<tr>
<td>Zeng, Dong</td>
<td>0A, 24, 2O, 2P</td>
</tr>
<tr>
<td>Zeng, Larry</td>
<td>0N, 2A</td>
</tr>
<tr>
<td>Zeraatkar, Navid</td>
<td>14, 15, 16</td>
</tr>
<tr>
<td>Zhang, Li</td>
<td>2T, 31</td>
</tr>
<tr>
<td>Zhang, Mengxi</td>
<td>0Q</td>
</tr>
<tr>
<td>Zhang, Peng</td>
<td>2L</td>
</tr>
<tr>
<td>Zhang, Shuangyue</td>
<td>1Q</td>
</tr>
<tr>
<td>Zhang, Siyuan</td>
<td>2N</td>
</tr>
<tr>
<td>Zhang, Tao</td>
<td>2T</td>
</tr>
<tr>
<td>Zhang, Wenkun</td>
<td>20, 33</td>
</tr>
<tr>
<td>Zhang, Xuezhu</td>
<td>0P</td>
</tr>
<tr>
<td>Zhang, Yuanke</td>
<td>0A</td>
</tr>
<tr>
<td>Zhang, Zheng</td>
<td>0F, 0L</td>
</tr>
<tr>
<td>Zhao, Chumin</td>
<td>0U</td>
</tr>
<tr>
<td>Zhao, Shusen</td>
<td>2L</td>
</tr>
<tr>
<td>Zhao, Wei</td>
<td>22</td>
</tr>
<tr>
<td>Zhao, Yunsong</td>
<td>2L</td>
</tr>
<tr>
<td>Zhi, Shaohua</td>
<td>2R</td>
</tr>
<tr>
<td>Zhou, Jian</td>
<td>1B, 1C, 1D</td>
</tr>
<tr>
<td>Zhou, Wei</td>
<td>19</td>
</tr>
<tr>
<td>Zhu, Lei</td>
<td>1X</td>
</tr>
<tr>
<td>Zhu, Shouping</td>
<td>0M</td>
</tr>
</tbody>
</table>
Conference Committee

Conference Chairs

Scott D. Metzler, General Chair, University of Pennsylvania (United States)
Samuel Matej, Program Chair, University of Pennsylvania (United States)

Organizing Committee

Paul Gravel, University of Pennsylvania (United States)
Yusheng Li, University of Pennsylvania (United States)
Stephen Moore, University of Pennsylvania (United States)
Peter Noël, University of Pennsylvania (United States)

Program Committee

Adam Alessio, Michigan State University (United States)
Evren Asma, Canon Medical Research (United States)
Freek Beekman, TU Delft (The Netherlands)
Charles Byrne, University of Massachusetts Lowell (retired) (United States)
Richard Carson, Yale University (United States)
Rolf Clackdoyle, TIMC-IMAG Laboratory, CNRS, Université Grenoble Alpes (France)
Maurizio Conti, Siemens Medical Solutions (United States)
Margaret Daube-Witherspoon, University of Pennsylvania (United States)
Michel Defrise, Vrije Universiteit Brussel (Belgium)
Bruno De Man, GE Research (United States)
Georges El Fakhri, Harvard Medical School, Massachusetts General Hospital (United States)
Jeff Fessler, University of Michigan (United States)
Thomas Flohr, Siemens Healthcare GmbH (Germany)
Eric Frey, Johns Hopkins University (United States)
Howard Giford, University of Houston (United States)
Paul Gravel, University of Pennsylvania (United States)
Jens Gregor, University of Tennessee (United States)
Grant Gullberg, University of California San Francisco (United States)
Jiang Hsieh, GE Healthcare (United States)
Brian Hutton, University College London (UK)
Xun Jia, University of Texas, Southwestern Medical Center
(United States)
Marc Kachelrieß, DKFZ (Germany)
Joel Karp, University of Pennsylvania (United States)
Alexander Katsevich, University of Central Florida (United States)
Paul Kinahan, University of Washington (United States)
Michael King, University of Massachusetts Medical School
(United States)
Thomas Koehler, Philips Research (Germany)
Hiroyuki Kudo, University of Tsukuba (Japan)
Patrick La Riviere, University of Chicago (United States)
Tobias Lasser, Technische Universität München (Germany)
Guenter Lauritsch, Siemens Healthcare GmbH (Germany)
Quanzheng Li, Massachusetts General Hospital, Harvard Medical
School (United States)
Yusheng Li, University of Pennsylvania (United States)
Jerome Liang, Stony Brook University (United States)
Yihuan Lu, Yale University (United States)
Nicole Maass, Siemens Healthcare GmbH (Germany)
Stephen Moore, University of Pennsylvania (United States)
Xuanqin Mou, Xi’an Jiaotong University (China)
Klaus Mueller, Stony Brook University (United States)
Peter Noël, University of Pennsylvania (United States)
Frederic Noo, University of Utah (United States)
Johan Nuyts, KU Leuven (Belgium)
Tinsu Pan, University of Texas M.D. Anderson Cancer Center
(United States)
Xiaochuan Pan, University of Chicago (United States)
Vladimir Panin, Siemens Medical Solutions (United States)
Jinyi Qi, University of California, Davis (United States)
Magdalena Rafecas, Universität zu Lübeck (Germany)
Arman Rahmim, University of British Columbia (Canada)
Andrew Reader, King’s College London (United Kingdom)
Ken Sauer, University of Notre Dame (United States)
Emil Sidky, University of Chicago (United States)
Arkadiusz Sîtek, IBM Watson Health Imaging (United States)
J. Webster Stayman, Johns Hopkins University (United States)
Charles Stearns, GE Healthcare (United States)
Ken Taguchi, Johns Hopkins University (United States)
Xiangyang Tang, Emory University School of Medicine (United States)
Richard Thompson, Canon Medical Research USA (United States)
Benjamin Tsui, Johns Hopkins University (United States)
Stefaan Vandenberghe, MEDISIP (Belgium)
Adam Wang, Stanford University (United States)
Ge Wang, RPI (United States)
Guobao Wang, University of California Davis Medical Center (United States)
Charles Watson, Siemens Medical Solutions USA, Inc. (United States)
Glenn Wells, University of Ottawa Heart Institute (Canada)
Hengyong Yu, University of Massachusetts Lowell (United States)
Larry Zeng, Weber State University (United States)

Session Chairs

CT-1 Iterative Reconstruction in CT
Xiaochuan Pan, University of Chicago (United States)
Yusheng Li, University of Pennsylvania (United States)

CT-2 CT Corrections
J. Webster Stayman, Johns Hopkins University (United States)
Zijia Guo, University of Utah (United States)

CT-3 CT Reconstruction and Imaging
Tobias Lasser, Technische Universität München (Germany)
Grace Gang, Johns Hopkins University (United States)

CT-4 Spectral CT / Material Decomposition
Peter Noël, University of Pennsylvania (United States)
Korbinian Mechlem, Technische Universität München (Germany)

EM-1 PET Reconstruction
Georges El Fakhri, Harvard Medical School, Massachusetts General Hospital (United States)
Zhaoheng Xie, University of California, Davis (United States)

EM-2 SPECT Imaging
Michel Defrise, Vrije Universiteit Brussel (Belgium)
Paul Gravel, University of Pennsylvania (United States)

EM-3 Quantitative Methods in PET
Margaret Daube-Witherspoon, University of Pennsylvania (United States)
Kuang Gong, Massachusetts General Hospital (United States)

DL-1 Deep Learning within CT Reconstruction
Marc Kachelrieß, DKFZ (Germany)
Ruben De Man, Stonybrook University (United States)
DL-2  Deep Learning within PET Reconstruction
    Johan Nuyts, KU Leuven (Belgium)
    Arkadiusz Sitek, IBM Watson Health Imaging (United States)

DL-3  Image Denoising and Characterization
    Jinyi Qi, University of California, Davis (United States)
    Yannick Berker, German Cancer Research Center (Germany)

OT  Other Novel Applications and Approaches
    Stephen Moore, University of Pennsylvania (United States)
    Fatma Terzioglu, University of Chicago (United States)

P-1  Poster Session 1
    Scott D. Metzler, University of Pennsylvania (United States)
    Jianan Cui, Massachusetts General Hospital and Zhejiang University

P-2  Poster Session 2
    Samuel Matej, University of Pennsylvania (United States)
    Benjamin Auer, University of Massachusetts Medical School (United States)
Conference Sponsors

**Gold Sponsors**

![United Imaging Logo]

**Silver Sponsors**

![Canon Logo]

**MOLECUBES**
MODULAR BENCHTOP IMAGING

**SYF Foundation**

![MI Labs Logo]
Making Molecular Imaging Clear
Introduction

The 15th International Meeting on Fully Three-Dimensional Image Reconstruction in Radiology and Nuclear Medicine was held June 2-6, 2019 on the campus of the University of Pennsylvania, Philadelphia, PA, USA.

Fully3D is a workshop-style conference focusing on algorithmic and computational methods for reconstruction of multi-dimensional data sets typically acquired using CT, PET, or SPECT. It is well known for bringing together experts in the field in an informal setting for greater depth of discussion on issues pertaining to reconstruction. The fact that nearly all recent major advances in image reconstruction have been first presented at the Fully3D meeting emphasizes the high relevance of this meeting.

We would like to thank the many cooperative participants, who submitted very high-quality abstracts and uploaded the final versions for this volume on time, the many reviewers that are listed in the organizing committee, who provided insightful and timely reviews, our corporate sponsors, who are listed above, and the personnel at SPIE for their extensive cooperation and accommodation in putting this together. We would also like to thank Dr. Stephen Moore, who has advised on the conference, Dr. Peter Noël, who advised on program decisions related to CT, and Drs. Paul Gravel and Yusheng Li, who provided extensive assistance in putting the program together.

Scott D. Metzler, General Chair
Samuel Matej, Program Chair