Front Matter: Volume 11080
The papers in this volume were part of the technical conference cited on the cover and title page. Papers were selected and subject to review by the editors and conference program committee. Some conference presentations may not be available for publication. Additional papers and presentation recordings may be available online in the SPIE Digital Library at SPIEDigitallibrary.org.

The papers reflect the work and thoughts of the authors and are published herein as submitted. The publisher is not responsible for the validity of the information or for any outcomes resulting from reliance thereon.

Please use the following format to cite material from these proceedings:

ISSN: 0277-786X
ISSN: 1996-756X (electronic)
ISBN: 9781510628533

Published by
SPIE
P.O. Box 10, Bellingham, Washington 98227-0010 USA
Telephone +1 360 676 3290 (Pacific Time) · Fax +1 360 647 1445
SPIE.org
Copyright © 2019, Society of Photo-Optical Instrumentation Engineers.

Copying of material in this book for internal or personal use, or for the internal or personal use of specific clients, beyond the fair use provisions granted by the U.S. Copyright Law is authorized by SPIE subject to payment of copying fees. The Transactional Reporting Service base fee for this volume is $21.00 per article (or portion thereof), which should be paid directly to the Copyright Clearance Center (CCC), 222 Rosewood Drive, Danvers, MA 01923. Payment may also be made electronically through CCC Online at copyright.com. Other copying for republication, resale, advertising or promotion, or any form of systematic or multiple reproduction of any material in this book is prohibited except with permission in writing from the publisher. The CCC fee code is 0277-786X/19/$21.00.

Printed in the United States of America by Curran Associates, Inc., under license from SPIE.

Publication of record for individual papers is online in the SPIE Digital Library.

SPIE. DIGITAL LIBRARY
SPIEDigitallibrary.org

Paper Numbering: Proceedings of SPIE follow an e-first publication model. A unique citation identifier (CID) number is assigned to each article at the time of publication. Utilization of CIDs allows articles to be fully citable as soon they are published online, and connects the same identifier to all online and print versions of the publication. SPIE uses a seven-digit CID article numbering system structured as follows:

- the first five digits correspond to the SPIE volume number.
- the last two digits indicate publication order within the volume using a base 36 numbering system employing both numerals and letters. These two-number sets start with 00, 01, 02, 03, 04, 05, 06, 07, 08, 09, 0A, 0B ... 0Z, followed by 10-1Z, 20-2Z, etc. The CID Number appears on each page of the manuscript.
Contents

SPECIAL SESSION: EXTREME MATERIALS

<table>
<thead>
<tr>
<th>Paper ID</th>
<th>Title</th>
<th>Authors</th>
<th>Conference Committee</th>
</tr>
</thead>
<tbody>
<tr>
<td>11080 02</td>
<td>Toward the use of metasurfaces in lens design (Invited Paper)</td>
<td>[11080-1]</td>
<td></td>
</tr>
<tr>
<td>11080 03</td>
<td>Acoustic and photonic topological insulators by topology optimization (Invited Paper)</td>
<td>[11080-2]</td>
<td></td>
</tr>
</tbody>
</table>

METALENSES

<table>
<thead>
<tr>
<th>Paper ID</th>
<th>Title</th>
<th>Authors</th>
<th>Conference Committee</th>
</tr>
</thead>
<tbody>
<tr>
<td>11080 0H</td>
<td>Quantifying fabrication errors in meta-lenses by Monte Carlo simulations</td>
<td>[11080-16]</td>
<td></td>
</tr>
</tbody>
</table>

TOPOLOGICAL METAMATERIALS

<table>
<thead>
<tr>
<th>Paper ID</th>
<th>Title</th>
<th>Authors</th>
<th>Conference Committee</th>
</tr>
</thead>
<tbody>
<tr>
<td>11080 0O</td>
<td>The algebraic geometry of photonic topological insulators</td>
<td>[11080-23]</td>
<td></td>
</tr>
<tr>
<td>11080 0Q</td>
<td>Topological metasurfaces for symmetry-protected electromagnetic line waves</td>
<td>[11080-25]</td>
<td></td>
</tr>
</tbody>
</table>

METASURFACES II

<table>
<thead>
<tr>
<th>Paper ID</th>
<th>Title</th>
<th>Authors</th>
<th>Conference Committee</th>
</tr>
</thead>
<tbody>
<tr>
<td>11080 0W</td>
<td>New phase-map for efficient random metasurfaces</td>
<td>[11080-31]</td>
<td></td>
</tr>
<tr>
<td>11080 0X</td>
<td>Multifunctional infrared metasurfaces for polarization analysis</td>
<td>[11080-32]</td>
<td></td>
</tr>
</tbody>
</table>

QUANTUM AND COOPERATIVE PHENOMENA

<table>
<thead>
<tr>
<th>Paper ID</th>
<th>Title</th>
<th>Authors</th>
<th>Conference Committee</th>
</tr>
</thead>
<tbody>
<tr>
<td>11080 17</td>
<td>Spontaneous emission mediated by energy transfer to a plasmonic antenna (Invited Paper)</td>
<td>[11080-40]</td>
<td></td>
</tr>
</tbody>
</table>
NOVEL PHENOMENA I

11080 1C Plasmon related electrical effects in strongly modulated metasurfaces [11080-45]

NOVEL PHENOMENA II

11080 1I Transdimensional photonic lattices with Mie-resonant nanoantennas [11080-51]

METADEVICES I

11080 1Q Disordered and densely packed ITO nanorods as an excellent lithography-free optical solar reflector metasurface for the radiative cooling of spacecraft [11080-60]
11080 1R Sensitivity variation as a function of frequency of a permittivity composite-sensor used to measure the moisture content of organic products [11080-61]

HYPERBOLIC AND ENZ MATERIALS

11080 1V Multilayered metamaterials hypercrystals at visible and infrared frequencies [11080-66]
11080 1W Scattering of electromagnetic waves by cylinder inside uniaxial hyperbolic medium [11080-67]
11080 1X TM and TE optical modes of the planar anisotropic aluminum-doped zinc oxide waveguides at the epsilon-near-zero spectral point [11080-68]

MATERIALS

11080 24 Effects of using lossy materials on the metal-insulator-metal nanostructure absorption spectrum [11080-75]

METADEVICES II

11080 27 Meta-mirrors with transverse invariance for beam shaping [11080-78]
11080 29 Spinning radiation from topological insulator [11080-117]
<table>
<thead>
<tr>
<th>Session</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>11080 2F</td>
<td>Metasurface synthesis through multi-objective optimization aided inverse-design (Invited Paper)</td>
<td>85</td>
</tr>
</tbody>
</table>

COMPUTATION METAMATERIALS

<table>
<thead>
<tr>
<th>Session</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>11080 2L</td>
<td>Coupled mode theory for metasurface design</td>
<td>91</td>
</tr>
<tr>
<td>11080 2N</td>
<td>Inverse design of 2D nanophotonics devices: 1×N optical power splitters, and photonic nanojet</td>
<td>93</td>
</tr>
</tbody>
</table>

DIELECTRIC METAMATERIALS

<table>
<thead>
<tr>
<th>Session</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>11080 2O</td>
<td>Ultra-high-Q dielectric metasurface for polarization conversion</td>
<td>94</td>
</tr>
<tr>
<td>11080 2P</td>
<td>Reconfigurable semiconductor Mie-resonant meta-optics</td>
<td>95</td>
</tr>
<tr>
<td>11080 2U</td>
<td>Nanostructured dielectric surfaces for Raman spectroscopy: design and thermal analysis</td>
<td>100</td>
</tr>
</tbody>
</table>

POSTER SESSION

<table>
<thead>
<tr>
<th>Session</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>11080 2W</td>
<td>Dielectric ring based metamaterial perfect reflector</td>
<td>102</td>
</tr>
<tr>
<td>11080 34</td>
<td>All-dielectric metalens-based Hartmann-Shack array for optical multi-parameters detection</td>
<td>112</td>
</tr>
</tbody>
</table>
Authors

Numbers in the index correspond to the last two digits of the seven-digit citation identifier (CID) article numbering system used in Proceedings of SPIE. The first five digits reflect the volume number. Base 36 numbering is employed for the last two digits and indicates the order of articles within the volume. Numbers start with 00, 01, 02, 03, 04, 05, 06, 07, 08, 09, 0A, 0B...0Z, followed by 10-1Z, 20-2Z, etc.

Aljawari, J. F., 20
Alpkılıç, Ahmet M., 2N
Atesof, Okan, 1Q
Babicheva, Viktoriya E., 11
Becchelli, R., 2O
Belling, Samuel W., 2L
Bennussl, Ayrton, 24
Berdzni, Jonas, 2U
Bisharat, Dia’aldin J., 0Q
Bonnema, Garrett T., 0X
Borne, Jeck, 02
Botey, Muriel, 27
Butakov, Nikifor A., 2P
Calliskan, Mehmet Deniz, 1Q
Campbell, Sawyer D., 2F
Carvalho, Mirele C., 1V
Cattasie, Peter B., 1W
Cemigoj, Jernej, 2U
Chen, Haotian, 2L
Cheng, Yu-Chieh, 27
Chorś, Hamid, 2P
Christiansen, Rasmus E., 03
Curano, Luke J., 0X
Dal, Q., 17
Dallaire, Xavier, 02
DelVallé, Granda, Javier, 2P
Duan, Yao, 0A
Dupré, Matthieu, 0W
Evans, Hayden A., 2P
Fan, Shanhui, 1W
Fellbacq, Didier, 0O
Feng, Xing, 34
Ferraro, A., 20
Garcia-Camara, B., 2O
Gerlin, Giampiero, 2U
Ghobadi, Amir, 1Q
Grave de Peralta, Luis, 24
Herrero, Ramon, 27
Higgs, David, 2P
Ibáñez de Lima, J. J., 1V
Iyer, Prasad P., 2P
Kalchelm, Yoav, 2P
Karka, Yojiro, 2W
Kanté, Boubacar, 0W
Keene, D., 1C
Kelly, Priscilla, 1X
Khan, Emroz, 29
Khayat Jafari, Ahmad, 24
Kurt, Hamza, 2N
Kuznetsova, Lyuba, 1X
Lewi, Tomer, 2P
Lilledahl, Skylar, 1X
Miroglotta, Joseph A., 0X
Narimanov, Evgenii E., 2P
Nasari, Hadi, 2W
Nelson, M., 17
Ni, Xinglei, 0A
Nogovska, N., 1C
Ozbay, Ekmel, 1Q
Panneton, Denis, 02
Parent, Jocelyn, 02
Penninck, L., 0H
Ranga, Riffka, 2W
Reyes Ayona, José Roberto, 1R
Rifai, 1W
Rodriguez-Esquerre, V. F., 1V
Rojas-Laguna, Roberto, 1R
Ronurapratul, T., 1C
Sanchez-Pena, J. M., 20
Schulier, Ivan K., 2P
Schulier, Jon A., 2P
Shahbazyan, T. V., 17
Shankhwar, Nishant, 2W
Shrekenhamer, David B., 0X
Sierra-Hernández, Juan Manuel, 1R
Sevenpiper, Daniel F., 0Q
Sigmund, Ole, 03
Silvestri, Fabrizio, 2U
Sinha, Raviendra Kumar, 2W
Soydan, Mahmut Can, 1Q
Stalnashes, Kestutis, 27
Stobbe, Søren, 03
Stoeveelaar, L, Pjotr, 2U
Strykerwa, Andrew C., 0X
Thibault, Simon, 02
Toledo Lopez, Andres, 1R
Toprak, Ahmet, 1Q
Trasoy, Juan, 2P
Urban, Christian, 2P
Usodimma, J., 17
Valmirski, Ilya, 2P
Vergaz, R., 20
Wang, Fengwen, 03
Wang, Paul Y., 2P
Wang, Pei-Yu, 27
Wang, Shouxun, 1X
Wang, Yuxi, 34
Wang, Zhaokun, 34

vii
Conference Committee

Symposium Chairs

Halina Rubinsztain-Dunlop, The University of Queensland (Australia)
Mark L. Brongersma, Geballe Laboratory for Advanced Materials (GLAM), Stanford University (United States)

Symposium Co-chairs

Reuven Gordon, University of Victoria (Canada)
Natalia M. Litchinitser, Duke University (United States)

Conference Chairs

Nader Engheta, University of Pennsylvania (United States)
Mikhail A. Noginov, Norfolk State University (United States)
Nikolay I. Zheludev, Optoelectronics Research Center (United Kingdom) and Nanyang Technological University (Singapore)

Conference Program Committee

Andrea Alù, The University of Texas at Austin (United States)
Alexandra Boltasseva, Purdue University (United States)
Igal Brener, Sandia National Laboratories (United States)
Mark L. Brongersma, Geballe Laboratory for Advanced Materials (GLAM), Stanford University (United States)
Joshua D. Caldwell, U.S. Naval Research Laboratory (United States)
Luca Dal Negro, Boston University (United States)
Jennifer A. Dionne, Stanford University (United States)
Jonathan A. Fan, Stanford University (United States)
Javier García de Abajo, ICFO - Institut de Ciències Fotòniques (Spain)
Behrad Gholipour, University of Alberta (Canada)
Harald W. Giessen, Universität Stuttgart (Germany)
Yuri S. Kivshar, The Australian National University (Australia)
Jacob B. Khurgin, Johns Hopkins University (United States)
Uriel Levy, The Hebrew University of Jerusalem (Israel)
Alexander V. Kildishev, Purdue University (United States)
Natalia M. Litchinitser, University at Buffalo (United States)
Peter Nordlander, Rice University (United States)
Gennady B. Shvets, The University of Texas at Austin (United States)
David R. Smith, Duke University (United States)
Mark I. Stockman, Georgia State University (United States)
Sergei Tretyakov, Aalto University School of Science and Technology (Finland)
Din Ping Tsai, National Taiwan University (Taiwan)
Augustine M. Urbas, Air Force Research Laboratory (United States)
Martin Wegener, Karlsruher Institut für Technologie (Germany)
Jeong Weon Wu, Ewha Womans University (Korea, Republic of)
Xiang Zhang, University of California, Berkeley (United States)

Session Chairs
1 Special Session: Extreme Materials
 Mikhail A. Noginov, Norfolk State University (United States)
2 Metamaterials: Active and Lasing
 Volker J. Sorger, The George Washington University (United States)
3 Nonlinear Phenomena
 Wei Bao, University of Nebraska-Lincoln (United States)
4 Metalenses
 Gennady B. Shvets, Cornell University (United States)
5 Topological Metamaterials
 Nader Engheta, University of Pennsylvania (United States)
 Mikhail A. Noginov, Norfolk State University (United States)
 Nikolay I. Zheludev, Optoelectronics Research Center (United Kingdom)
6 Metasurfaces I
 Ivan Fernandez-Corbaton, Karlsruher Institut für Technologie (Germany)
7 Metasurfaces II
 Jason G. Valentine, Vanderbilt University (United States)
8 Quantum and Cooperative Phenomena
 Viktor A. Podoiskiy, University of Massachusetts Lowell (United States)
9 Novel Phenomena I
 Deniz Umut Yildirim, Bilkent University (Turkey)
10 Plasmonic Phenomena
 Matthew T. Sheldon, Texas A&M University (United States)
11 Novel Phenomena II
 Deesha Shah, Purdue University (United States)
12 Metadevices I
Behrad Gholipour, University of Alberta (Canada)

13 Hyperbolic and ENZ Materials
Pin Chieh Wu, National Cheng Kung University (Taiwan)

14 Materials
Thomas Taubuer, RWTH Aachen Universität (Germany)

15 Metadevices II
Natalia M. Litchinitser, Duke University (United States)

16 Special Session: Use of Mathematics for Nanophotonic Design and Finding Limits
Nader Engheta, University of Pennsylvania (United States)
Mikhail A. Noginov, Norfolk State University (United States)
Nikolay I. Zheludev, Optoelectronics Research Center (United Kingdom)
Ruwen Peng, Nanjing University (China)

17 Special Session: Use of Nanophotonics for Mathematics and Information Processing
Tigran V. Shahbazyan, Jackson State University (United States)

18 Computation Metamaterials
Jonathan A. Fan, Stanford University (United States)

19 Dielectric Metamaterials
Cesare Soci, Nanyang Technological University (Singapore)