You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
10 September 2019Controlling the thermal expansion coefficients of transition metal dichalcogenides via alloy engineering (Conference Presentation)
Transition metal dichalcogenides (TMDs) and 2-dim materials beyond graphene have shown excellent potential for future electronics. Controlling the heat flow across a hetero-structure will be crucial to developing high-speed electronic devices based on 2-dim materials. We have recently shown that the thermal expansion coefficient (TEC) dramatically increases in 2-dim materials when the thickness of the material shrinks from bulk to a few monolayers. Therefore, the TEC mismatch of 2-dim materials becomes an additional concern in designing electronic nano-devices. More specifically, we need to develop methods that enable us to control and tailor the TEC of TMDs through alloying or defect engineering.
In this contribution, I will employ transition metal alloying in TMDs to tune the TEC of monolayer Mo1-xWxS2 and study the interplay between thermal expansion and local defects using a combination of the scanning transmission electron microscope (STEM), electron energy loss spectroscopy (EELS) and first-principles DFT calculations. More specifically, we will measure the thermal expansion coefficient based on the plasmon energy shift as a function of temperature and combine this with first-principles modeling of the low-loss EELS signals. Using DFT calculations in the random phase approximation (RPA) we model the the plasmon peak shift as a function of lattice expansion. Combining the experimental and modeling data, we can now predict the TEC for WSe2.
Using this approach, we have determined the TEC of monolayer MoS2 and WS2 and found a significant mismatch between the two materials. To explore the influence of alloy engineering on the TEC, free-standing Mo0.7W0.3S2 2-dim materials are prepared. Finally, I will compare the TEC of alloyed Mo0.7W0.3S2 monolayer with that of MoS2/WS2 lateral heterointerfaces and explore the effects of strain or point defects on the local TEC using a combination of STEM imaging, EEL spectroscopy and DFT modeling.
Robert Klie
"Controlling the thermal expansion coefficients of transition metal dichalcogenides via alloy engineering (Conference Presentation)", Proc. SPIE 11090, Spintronics XII, 110902E (10 September 2019); https://doi.org/10.1117/12.2530040
The alert did not successfully save. Please try again later.
Robert Klie, "Controlling the thermal expansion coefficients of transition metal dichalcogenides via alloy engineering (Conference Presentation)," Proc. SPIE 11090, Spintronics XII, 110902E (10 September 2019); https://doi.org/10.1117/12.2530040