Translator Disclaimer
30 August 2019 A CubeSat receiver for the study of VLF-waves at LEO
Author Affiliations +
We describe the design of the μBBR (micro Broad Band Receiver), a VLF receiver for the VPM mission. VPM is an AFRL CubeSat mission that will be launched into a 500 km circular orbit with a 45° inclination where it will continuously sample the VLF electromagnetic spectrum from 300 Hz to 30 kHz. These waves largely control the state of the radiation belts and improved understanding of them will lead to improved radiation belt predictive models. The µBBR consists of a single-axis electric dipole antenna, or dipole antenna assembly (DAA), a single-axis magnetic field search coil antenna, or search coil boom assembly (SCBA) and a payload electronics module (PEM). It is designed for high reliability by using radiation-tolerant components. The dipole antenna and search coil are aligned perpendicular to each other and the spacecraft is operated so as to keep both perpendicular to the background magnetic field as much as possible. All signal processing is implemented in an FPGA, using fixed-point arithmetic, without any volatile onboard firmware. Data is sampled at 80 kHz using a GPS-disciplined clock. Two date products are delivered: a reduced-bandwidth survey mode with 6.5, 13.1, or 26.2 second resolution, and a commandable full-resolution burst mode. Burst data can be taken in the time or frequency domain, can be selectively windowed along the time or frequency axes, and can be decimated by a factor of 2, 4, 8, or 16. Such capability is included because of anticipated data download rate limitations. The VPM spacecraft is scheduled for launch before the end of 2019.
© (2019) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Daniel Ramos, Gordon Wilson, Austin Sousa, Robert Marshall, Ken Brunetto, John Ballenthin, Ronald Kay, James Patton, Stephen Quigley, Judy Fennelly, Michael Starks, Travis Willet-Gies, Stephen Tullino, Ivan Linscott, and Umran Inan "A CubeSat receiver for the study of VLF-waves at LEO", Proc. SPIE 11131, CubeSats and SmallSats for Remote Sensing III, 111310P (30 August 2019);


A traffic analyzer for multiple SpaceWire links
Proceedings of SPIE (July 25 2014)
Space qualification of a commercial GPS receiver
Proceedings of SPIE (August 10 1992)
Third generation of correlators for six antennas
Proceedings of SPIE (July 03 2000)
Calibration system of HF multichannel radio receiver system
Proceedings of SPIE (November 01 2006)
CCDs and camera electronics for the NASA CONTOUR mission
Proceedings of SPIE (December 10 2001)

Back to Top