You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
9 September 2019The extended generalized Haar-Walsh transform and applications
Extending computational harmonic analysis tools from the classical setting of regular lattices to the more general setting of graphs and networks is very important and much research has been done recently. Our previous Generalized Haar-Walsh Transform (GHWT) is a multiscale transform for signals on graphs, which is a generalization of the classical Haar and Walsh-Hadamard Transforms. This article proposes the extended Generalized HaarWalsh Transform (eGHWT). The eGHWT and its associated best-basis selection algorithm for graph signals will significantly improve the performance of the previous GHWT with the similar computational cost, O(N log N) where N is the number of nodes of an input graph. While the previous GHWT/best-basis algorithm seeks the most suitable orthonormal basis for a given task among more than (1.5)N possible bases, the eGHWT/best-basis algorithm can find a better one by searching through more than 0.618 · (1.84)N possible bases. This article describes the details of the eGHWT/basis-basis algorithm and demonstrates its superiority using several examples including genuine graph signals as well as conventional digital images viewed as graph signals.
The alert did not successfully save. Please try again later.
Yiqun Shao, Naoki Saito, "The extended generalized Haar-Walsh transform and applications," Proc. SPIE 11138, Wavelets and Sparsity XVIII, 111380C (9 September 2019); https://doi.org/10.1117/12.2528923