You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
6 September 2019Road network mapping from aerial images
Building and expansion of an efficient transportation network are essential for urban city advancement. However, tracking road development in an area is not an easy task as city planners do not always have access to credible information. A road network mapping framework is proposed which uses a random forest model for pixel-wise road segmentation. Road detection is followed by computer vision post-processing steps including Connected Component Analysis (CCA) and Hough Lines method for network extraction from high-resolution aerial images. The custom dataset used consists of images collected from an urban settlement in India.