Translator Disclaimer
Presentation + Paper
9 October 2019 Ultrathin tunable terahertz absorbers based on electrostatically actuated metamaterial
Author Affiliations +
High performance tunable absorbers for terahertz (THz) frequencies will be crucial in advancing applications such as single-pixel imaging and spectroscopy. Metamaterials provide many new possibilities for manipulating electromagnetic waves at the subwavelength scale. Due to the limited response of natural materials to terahertz radiation, metamaterials in this frequency band are of particular interest.

The realization of a high-performance tunable (THz) absorber based on microelectromechanical system (MEMS) is challenging, primarily due to the severe mismatch between the actuation range of most MEMS (on the order of 1-10 microns) and THz wavelengths on the order of 100-1000 microns. Based on a metamaterial design that has an electromagnetic response that is extremely position sensitive, we combine meta-atoms with suspended at membranes that can be driven electrostatically. This is demonstrated by using near-field coupling of the meta-atoms to create a substantial change in the resonant frequency.

The devices created in this manner are among the best-performing tunable THz absorbers demonstrated to date, with an ultrathin device thickness ( 1/50 of the working wavelength), absorption varying between 60% and 80% in the initial state when the membranes remain suspended, and with a fast switching speed ( 27 us). In the snap-down state, the resonance shifts by γ >200% of the linewidth (14% of the initial resonance frequency), and the absorption modulation measured at the initial resonance can reach 65%.
Conference Presentation
© (2019) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Mingkai Liu, Mohamad Susli, Dilusha Silva, Gino Putrino, Hemendra Kala, Shuting Fan, Michael Cole, Lorenzo Faraone, Vincent P. Wallace, Willie J. Padilla, David A. Powell, Ilya V. Shadrivov, and Mariusz Martyniuk "Ultrathin tunable terahertz absorbers based on electrostatically actuated metamaterial", Proc. SPIE 11159, Electro-Optical and Infrared Systems: Technology and Applications XVI, 1115908 (9 October 2019);

Back to Top