You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
10 October 2019Lidar-based positioning in forest environments
Small high-resolution lidar systems can be used in a broad range of applications such as object detection, foliage penetration, and positioning. In this study, a scanning lidar was used together with two visual cameras and a low-cost inertial measurement unit to obtain precise positioning in forest environments. Position accuracy better than 0.05 % of the traversed path was obtained with the system. The visual cameras and the inertial measurement unit were used to estimate an approximate trajectory and the lidar data were applied to refine the positioning using high level and low level features extracted from the lidar data. Low level features were characterized by planes and sections of the tree stems, and high level features by whole trees. The system was able to operate without support from satellite navigation data or other positioning support. The results can be applied for navigation in forest environments e.g. for small unmanned aerial vehicles or ground vehicles.
The alert did not successfully save. Please try again later.
Michael Tulldahl, Joakim Rydell, Johan Holmgren, Jonas Nordlöf, Erik Willén, "Lidar-based positioning in forest environments," Proc. SPIE 11160, Electro-Optical Remote Sensing XIII, 1116005 (10 October 2019); https://doi.org/10.1117/12.2533299