You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
19 September 2019A deep neural network model for hazard classification
Hazard learning algorithms employing ground penetrating radar (GPR) data for purposes of discrimination, detection, and classification suffer from a pernicious robustness problem; models trained on a particular physical region using a given sensor (antenna system) typically do not transfer effectively to diverse regions interrogated with differing sensors. We implement a novel training paradigm using region-based stratified cross-validation that improves learning induction across disparate data sets. We test this training paradigm on a novel deep neueral network architecture (DNN) and report empirical results from testing/training on data collected from multiple sites. Furthermore, we discuss the relationship between penalty loss and evaluation metrics.
The alert did not successfully save. Please try again later.
Joseph N. Wilson, Ferit Toska, Maksim Levental, Peter J. Dobbins, "A deep neural network model for hazard classification," Proc. SPIE 11169, Artificial Intelligence and Machine Learning in Defense Applications, 1116903 (19 September 2019); https://doi.org/10.1117/12.2535681