You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
19 September 2019Adversarial camouflage for naval vessels
The use of different types of camouflage is a longstanding technique employed by armed forces in order to avoid detection, classification or tracking of objects of military interest. Typically, the use of such camouflage is intended to fool human observers. However, in future battle theaters one must expect to face weapons that are ’artificially intelligent’ in some way, and the question then arises as to whether the same types of camouflage will be effective against such weapons. An equally important question is if it is possible to design camouflage in order to specifically confuse ’artificially intelligent’ adversaries and what such camouflage might look like. It is this latter question that is the object of the study reported here. In particular, we consider whether carefully designed patterns of camouflage will have a detrimental effect on the performance of neural networks trained to distinguish among different ship classes. We train a neural network to distinguish between different types of military and civilian vessels and specifically require the network to determine whether the vessel is military or civilian. We then use this network to train a second network, a generative adversarial network, that will generate patterns to overlay on parts of the vessels in such a way as to thwart the performance of the first network. We show that such adversarial camouflage is very effective in confusing the original classification network.
The alert did not successfully save. Please try again later.
Lars Aurdal, Kristin Hammarstrøm Løkken, Runhild Aae Klausen, Alvin Brattli, Hans Christian Palm, "Adversarial camouflage for naval vessels," Proc. SPIE 11169, Artificial Intelligence and Machine Learning in Defense Applications, 111690K (19 September 2019); https://doi.org/10.1117/12.2532756