You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
20 November 2019Creation of high-fluence precursors by 351-nm laser exposure on SiO2 substrates
The laser-induced damage performance of fused silica optics when exposed to 351-nm ns pulses is a limiting factor in the design and operation of most high-energy laser systems. As such, significant effort has been expended in developing laser damage testing protocols and procedures to inform laser system design and operating limits. These tests typically rely on multiple laser exposures for statistical validation. For larger aperture systems testing an area equal to that of the optical components in the system is functionally impossible requiring interrogation of sub-scale witness samples with elevated fluences. In this work, we show that, under the certain circumstances, the laser exposure used to test one location on a sample will generate additional laser-induced damage precursors in regions beyond that exposed to laser light and hence degrade the damage performance observed on subsequent exposures. In addition, we will outline the conditions under which this phenomenon occurs, as well as methods for mitigating or eliminating the effect.
The alert did not successfully save. Please try again later.
David A. Cross, Christopher W. Carr, "Creation of high-fluence precursors by 351-nm laser exposure on SiO2 substrates," Proc. SPIE 11173, Laser-induced Damage in Optical Materials 2019, 111730X (20 November 2019); https://doi.org/10.1117/12.2536507