You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
12 November 2019An absolute linear displacement sensor
High precision, high resolution and absolute position are the key characteristics for linear displacement measurement.This paper proposes an absolute linear displacement sensor which is suitable for harsh environment. The sensor has a primary coil and a secondary coil.The primary coil is composed of two arrays of spiral coils which are arranged orthogonally.The primary coil is supplied with 4 kHz alternating current to generate two arrays of magnetic field that travel orthogonally. Meanwhile, the spatial periods of the magnetic fields are N and (N+1). The secondary coil consists of two sets of spiral coils, and every set of spiral coils induce only one array of magnetic field.With the motion of the secondary coil, two roads of signals are induced. According to the phase comparison, the absolute position is determined.The structure and working principle of the sensor is proposed. The sensor model is simulated by finite element analysis software. A sensor prototype is fabricated to be verified by experiment. The experimental results show that the measurement range is 61.5mm with the linearity 0.54%.