Translator Disclaimer
31 December 2019 Tuning the florescence color of gradient bandgap perovskite nanoplate by direct laser writing
Author Affiliations +
Lead halide perovskites are widely applied in not only photovoltaics, but also on-chip light source, nanolaser, and photon detection. In order to promote the incorporation of perovskite into integrated devices, microscale color patterning flexibility is a very important step. Femtosecond (fs) laser fabrication has shown significant advantages of high spatial resolution, low surround damage, and high processing efficiency over the other laser fabrication. Compared to the state-of-art techniques, the straightforward fs-direct laser writing (fs-DLW) also has advantages of mask-free, simple one step, and contactless. Here, a specially designed formamidinium lead mixed-halide nanoplatelet (FAPb(BrxI1-x)3 NP) with gradient bandgap is fabricated by chemical vapor deposition method. Then, spatially resolved modulation of the fluorescence by fs-DLW is demonstrated on the as-grown NP. The fluorescence color is modulated from red to green under a controlled laser pulse, due to the replacement of iodide ions by bromide ions. Specifically, the as-grown NP (thickness≈800 nm) is with a gradual bromide-iodide composition along the depth, mainly exhibits an emission of 710-nm from the bottom iodine rich phase. After halide substitution induced by fs-DLW, new fluorescence peaks appear in the wavelength range of 540 to 700 nm, which is controlled by the fs-DLW conditions. The fluorescent color is spatially modulated from red to green, enabling microscale resolved multicolor emission, implying the potential applications in micro-encryption, sensors, multicolor displays, lasers, and light-emitting devices.
© (2019) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Chunhua Zhou, Guiyuan Cao, Zhixing Gan, Qingdong Ou, Qiaoliang Bao, Baohua Jia, and Xiaoming Wen "Tuning the florescence color of gradient bandgap perovskite nanoplate by direct laser writing", Proc. SPIE 11201, SPIE Micro + Nano Materials, Devices, and Applications 2019, 112010Q (31 December 2019);

Back to Top