You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
19 February 2020Deep learning for objective OCTA detection of diabetic retinopathy
Early detection of diabetic retinopathy (DR) is an essential step to prevent vision losses. This study is the first effort to explore convolutional neural networks (CNNs) for transfer-learning based optical coherence tomography angiography (OCTA) detection and classification of DR. We employed transfer-learning using a pre-trained CNN, VGG16, based on the ImageNet dataset for classification of OCTA images. To prevent overfitting, data augmentation, e.g. rotations, flips, and zooming, and 5-fold cross-validation were implemented. A dataset comprising of 131 OCTA images from 20 control, 17 diabetic patients without DR (NoDR), and 60 nonproliferative DR (NPDR) patients were used for preliminary validation. Best classification performance was achieved with fine-tuning nine layers of the sixteen-layer CNN model.
The alert did not successfully save. Please try again later.
David Le, Minhaj Nur Alam, Jennifer I. Lim, R. V. P. Chan, Xincheng Yao, "Deep learning for objective OCTA detection of diabetic retinopathy," Proc. SPIE 11218, Ophthalmic Technologies XXX, 112181P (19 February 2020); https://doi.org/10.1117/12.2546586