Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XXIV

Joseph A. Izatt
James G. Fujimoto

Editors

3–5 February 2020
San Francisco, California, United States

Sponsored by
SPIE

Cosponsored by
Wasatch Photonics (United States)

Published by
SPIE

Volume 11228
The papers in this volume were part of the technical conference cited on the cover and title page. Papers were selected and subject to review by the editors and conference program committee. Some conference presentations may not be available for publication. Additional papers and presentation recordings may be available online in the SPIE Digital Library at SPIEDigitalLibrary.org.

The papers reflect the work and thoughts of the authors and are published herein as submitted. The publisher is not responsible for the validity of the information or for any outcomes resulting from reliance thereon.

Please use the following format to cite material from these proceedings:

ISSN: 1605-7422
ISSN: 2410-9045 (electronic)
ISBN: 9781510632196

Published by
SPIE
P.O. Box 10, Bellingham, Washington 98227-0010 USA
Telephone +1 360 676 3290 (Pacific Time)· Fax +1 360 647 1445
SPIE.org
Copyright © 2020, Society of Photo-Optical Instrumentation Engineers.

Copying of material in this book for internal or personal use, or for the internal or personal use of specific clients, beyond the fair use provisions granted by the U.S. Copyright Law is authorized by SPIE subject to payment of copying fees. The Transactional Reporting Service base fee for this volume is $21.00 per article (or portion thereof), which should be paid directly to the Copyright Clearance Center (CCC), 222 Rosewood Drive, Danvers, MA 01923. Payment may also be made electronically through CCC Online at copyright.com. Other copying for republication, resale, advertising or promotion, or any form of systematic or multiple reproduction of any material in this book is prohibited except with permission in writing from the publisher. The CCC fee code is 1605-7422/20/$21.00.

Printed in the United States of America by Curran Associates, Inc., under license from SPIE.

Publication of record for individual papers is online in the SPIE Digital Library.

SPIEDigitalLibrary.org

Paper Numbering: Proceedings of SPIE follow an e-First publication model. A unique citation identifier (CID) number is assigned to each article at the time of publication. Utilization of CIDs allows articles to be fully citable as soon as they are published online, and connects the same identifier to all online and print versions of the publication. SPIE uses a seven-digit CID article numbering system structured as follows:

- The first five digits correspond to the SPIE volume number.
- The last two digits indicate publication order within the volume using a Base 36 numbering system employing both numerals and letters. These two-number sets start with 00, 01, 02, 03, 04, 05, 06, 07, 08, 09, 0A, 0B ... 0Z, followed by 10-1Z, 20-2Z, etc. The CID Number appears on each page of the manuscript.
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>NOVEL LIGHT SOURCES AND THEIR APPLICATIONS</td>
<td></td>
</tr>
<tr>
<td>11228 0D</td>
<td>Master-slave principle applied to an electrically-tunable swept source-OCT system</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>BRAIN AND NEURAL IMAGING</td>
<td></td>
</tr>
<tr>
<td>11228 0Q</td>
<td>Quantifying changes in murine fetal brain vasculature due to prenatal exposure to teratogens with in utero optical coherence tomography</td>
<td>25</td>
</tr>
<tr>
<td>11228 0S</td>
<td>In vivo imaging of human peripheral nerves using optical coherence tomography compared to histopathology slices</td>
<td>91</td>
</tr>
<tr>
<td></td>
<td>AO AND MICROSCOPIC OCT</td>
<td></td>
</tr>
<tr>
<td>11228 0X</td>
<td>In vivo Mirau-type optical coherence microscopy with symmetrical illumination</td>
<td>32</td>
</tr>
<tr>
<td></td>
<td>CLINICAL APPLICATIONS</td>
<td></td>
</tr>
<tr>
<td>11228 15</td>
<td>Optical coherence tomography for complex diagnosis of vulvar diseases</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>OCT NEW TECHNOLOGY</td>
<td></td>
</tr>
<tr>
<td>11228 16</td>
<td>Switchable vertical/horizontal section imaging with line-field confocal optical coherence tomography</td>
<td>41</td>
</tr>
<tr>
<td>11228 19</td>
<td>From master-slave to down-conversion optical coherence tomography</td>
<td>44</td>
</tr>
<tr>
<td></td>
<td>SIGNAL/IMAGE PROCESSING</td>
<td></td>
</tr>
<tr>
<td>11228 1G</td>
<td>Virtual multi-directional optical coherence tomography</td>
<td>51</td>
</tr>
</tbody>
</table>
11228 1H Achieving the ideal point spread in swept source OCT [11228-52]

FULL FIELD OCT

11228 1Q Multifrequency-swept optical coherence microscopy for full-field in-vivo intracochlear vibration measurement [11228-61]

MACHINE LEARNING

11228 20 Comparison of classification methods of Barret’s and dysplasia in the esophagus from in vivo optical coherence tomography images [11228-71]

NOVEL CONTRAST MECHANISMS

11228 26 A spectral de-mixing model for triplex in vivo imaging of optical coherence tomography contrast agents [11228-77]
11228 2C Quantification of ex vivo tissue activity by short and long time-course analysis of multifunctional OCT signals [11228-83]

POSTER SESSION

11228 2F Multimodal optical coherence tomography for quantitative diagnosis of breast cancer subtypes [11228-86]
11228 2L 840-nm broadband SLED-SOA MOPA source integrated in 14-pin butterfly module with 100+ mW free-space output power [11228-93]
11228 2M Application of over-sampling nano-sensitive optical coherence tomography for monitoring corneal internal structural changes in corneal cross-linking [11228-94]
11228 2N Combined-SLED source for UHR-OCT and SLO integrated in 14-pin butterfly module [11228-95]
11228 2O Segmented OCT data set for depth resolved brain tumor detection validated by histological analysis [11228-96]
11228 2P Achromatic phase-shifting method for isolated tissue imaging with video-rate FF-OCT [11228-97]
11228 2T Superluminescent diodes of spectral range 730 – 790 nm based on strained SQW heterostructure [11228-102]
11228 2U High power low coherent light sources based on superluminescent diodes [11228-103]
Numerical method for axial motion correction in optical coherence tomography [11228-104]

Transparent media thickness measurement employing low-coherence interferometry and a multi-element array [11228-108]

Development of HR-SD-OCT system using supercontinuum light source and its application in detecting nanoscale changes [11228-109]
Authors

Numbers in the index correspond to the last two digits of the seven-digit citation identifier (CID) article numbering system used in Proceedings of SPIE. The first five digits reflect the volume number. Base 36 numbering is employed for the last two digits and indicates the order of articles within the volume. Numbers start with 00, 01, 02, 03, 04, 05, 06, 07, 08, 09, 0A, 0B...0Z, followed by 10-1Z, 20-2Z, etc.

Abd El-Sadek, I. G., 2C
Alexandrov, Sergey, 2M, 30
Ambekar, Yogeshwari, 0Q
Andreev, A. Yu., 2T
Anikeev, Andrey S., 2T, 2U
Arain, Muzammil A., 1H
Atla, Walid, 1H
Azmami, Icham, 16
Bonsanto, M. M., 2O
Bradu, Adrian, 0D, 19
Brenke, C., 0S
Brinkmann, R., 2O
Bustamante, Noemi, 0Q
Carolus, A. E., 0S
Cernat, Ramona, 0D, 19
Chamorovskiy, Alexander, 2T, 2U
Chen, Jianjian, 2P
Choi, Samuel, 1Q
Dahdah, J., 2L, 2N
Das, Nandan, 2M, 30
de la Zerda, Adam, 26
dey, Rajib, 2M, 30
Draxinger, W., 2O
Dubois, Arnaud, 16
Duelk, M., 2L, 2N
Ensher, Jason, 0D
Ford, Tim N., 1H
Fukuda, S., 2C
Gao, Wannong, 2P
Gelikonov, Grigory V., 15, 2F, 2V
Gelikonov, V. M., 2V
Gerhardt, N. C., 0S
Gladkova, Natalia D., 15, 2F
Gloor, S., 2L, 2N
Grill, C., 2O
Gubarkova, Ekaterina V., 2F
Hagel, C., 2O
Hibino, Hiroshi, 1Q
Ho, Tuan-Shu, 0X
Hofmann, M. R., 0S
Huber, R., 2O
Il’chenko, Stepan N., 2T, 2U
Jabbour, Joey, 1H
Johnson, Bart, 1H
Kano, H., 2C
Karashtin, Dmitriy A., 15
Kemp, Nate, 1H
Konovalova, Elizaveta A., 15
Kouka, Amur, 0Q
Kropáč, Vlastimil, 2Z
Ksenofontov, S. Yu., 2V
Kuznetsov, Sergey S., 2F
Kuznetsova, Irina A., 15
Ladugin, M. A., 2T
Lange, B., 2O
Larín, Kirill V., 0Q
Leahy, Martin, 2M, 30
Lenz, M., 0S
Levecq, Olivier, 16
Liu, Chih-Hao, 0Q
Lu, Chih-Wei, 0X
Makita, Shuichi, 1G, 2C
Marmalyuk, A. A., 2T
Marques, Manuel Jorge M., 0D, 19, 2Z
Matussaka, S., 2C
Matuschek, N., 2L
Matveev, Lev A., 15, 2F
Matveev, Alexander L., 2F
Miranda, Rajesh C., 0Q
Miyazawa, A., 2C
Moiseev, Alexander A., 15, 2F, 2V
Möller, J., 0S
Mukherjee, P., 2C
Neuhaus, Kai, 2M, 30
Nin, Fumiaki, 1Q
Nolan, Andrew, 2M, 30
Ogien, Jonas, 16
Oida, Daisuke, 1G
Okawa, Kensuke, 1G
Ojeda, J., 2L, 2N
Oka, Y., 2C
Oshika, T., 2C
Ota, Takeru, 1Q
Padalitsa, A. A., 2T
Pankratov, K. M., 2T
Pholoiu, Christos, 20
Pitrís, Costas, 20
Piastris, George, 20
Podoleanu, Adrian, 0D, 19, 2Z
Potapov, Arseniy L., 15
Primerov, N., 2N
Radenska-Lopovok, Stefka G., 15
Raghnathan, Raksha, 0Q
Rezzonico, R., 2L
Safonov, Ivan K., 15
Schmieder, K., 0S
Schmoll, Tilman, 1H
Shen, L. T. W., 2C
Shevidi, Saba, 26
Shidlovski, Vladimir R., 2T, 2U
Shilyagin, P. A., 2V
Si, Peng, 26
Singh, Manmohan, 0Q
Sirrkina, Marina A., 15, 2F
Sovetsky, Alexander A., 2F
Strenge, P., 2O
Tearney, Guillermo, 20
Terpelov, D. A., 2V
Timakova, Anna A., 15
Tsai, Meng-Tsan, 1G
Tsai, Ming-Rung, 0X
Vagapova, Nailya N., 15
van de Nes, J. A. P., 0S
Velez, C., 2L, 2N
Vorontsov, Alexey Yu., 2F
Vorontsov, Dmitriy A., 2F
Wang, Tai-Ang, 1G
Welp, H., 0S
Whitney, Peter, 1H
Williams, Rick, 1H
Woo, Seungbum, 1H
Yakubovich, Sergei D., 2T, 2U
Yamashita, T., 2C
Yan, Connie, 0Q
Yarotskaya, I. V., 2T
Yasuno, Yoshiaki, 1G, 2C
Yuan, Edwin, 26
Zagaynova, Elena V., 15, 2F
Zaitsev, Vladimir Y., 2F
Zhou, Yi, 2M, 30
Zhu, Yue, 2P
Conference Committee

Symposium Chairs
Jennifer K. Barton, The University of Arizona (United States)
Wolfgang Drexler, Medizinische Universität Wien (Austria)

Program Track Chairs
Tuan Vo-Dinh, Fitzpatrick Institute for Photonics, Duke University (United States)
Anita Mahadevan-Jansen, Vanderbilt University (United States)

Conference Chairs
Joseph A. Izatt, Duke University (United States)
James G. Fujimoto, Massachusetts Institute of Technology (United States)

Conference Program Committee
Peter E. Andersen, Technical University of Denmark (Denmark)
Kostadinka Bizheva, University of Waterloo (Canada)
Stephen A. Boppart, University of Illinois at Urbana-Champaign (United States)
Zhongping Chen, Beckman Laser Institute and Medical Clinic (United States)
Johannes de Boer, Vrije Universiteit Amsterdam (Netherlands)
Wolfgang Drexler, Medizinische Universität Wien (Austria)
Grigory V. Gelikonov, Institute of Applied Physics (Russian Federation)
Christoph K. Hitzenberger, Medizinische Universität Wien (Austria)
Robert A. Huber, Universität zu Lübeck (Germany)
Rainer A. Leitgeb, Medizinische Universität Wien (Austria)
Xingde Li, Johns Hopkins University (United States)
Yingtian Pan, Stony Brook University (United States)
Adrian Gh. Podoleanu, University of Kent (United Kingdom)
Andrew M. Rollins, Case Western Reserve University (United States)
Marinko V. Sarunic, Simon Fraser University (Canada)
Guillermo J. Tearney, Wellman Center for Photomedicine (United States)
Valery V. Tuchin, Saratov State University (Russian Federation) and Tomsk State University (Russian Federation) and Institute of Precision Mechanics and Control of the RAS (Russian Federation)
Ruikang K. Wang, University of Washington (United States)
Maciej Wojtkowski, Nicolaus Copernicus University (Poland)
Yoshiaki Yasuno, University of Tsukuba (Japan)

Session Chairs

1. OCT Angiography
 Joseph A. Izatt, Duke University (United States)

2. Novel Light Sources and Their Applications
 James G. Fujimoto, Massachusetts Institute of Technology (United States)

3. Ophthalmic New Technology
 Ruikang K. Wang, University of Washington (United States)

4. Brain and Neural Imaging
 Maciej Wojtkowski, Polish Academy of Sciences (Poland)

5. AO and Microscopic OCT
 Christoph K. F. Hitzenberger, Medizinische Universität Wien (Austria)

6. Clinical Applications
 Kostadinka Bizheva, University of Waterloo (Canada)

7. OCT New Technology
 Johannes F. de Boer, Vrije Universiteit Amsterdam (Netherlands)

8. Signal/Image Processing
 Andrew M. Rollins, Case Western Reserve University (United States)

9. Full Field OCT
 Zhongping Chen, Beckman Laser Institute and Medical Clinic (United States)

10. Small Animal/Preclinical
 Rainer A. Leitgeb, Medizinische Universität Wien (Austria)

11. Machine Learning
 Marinko V. Sarunic, Simon Fraser University (Canada)

12. Novel Contrast Mechanisms
 Peter E. Andersen, DTU Fotonik (Denmark)