You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
2 March 2020Optical metrology for nanowires grown with molecular beam epitaxy
Semiconductor nanowires are important materials for quantum transport experiments and are used in research on qubits. Extended arrays of nanowires can be grown bottom-up by Molecular Beam Epitaxy (MBE). The full process involves several steps. When fabricating nanowires, a common practice is to follow a well-established recipe and only characterize the finalized materials. If the final wires are found to be flawed, the process must be repeated with new parameters. It is therefore desirable to have a characterization method to monitor the process before and after each fabrication step. Conventional characterization techniques such as SEM are time-consuming and, in some cases, damage the samples, e.g. before and after an electron beam lithography process. Scatterometry is fast, accurate, non-destructive and is already used in the semiconductor industry. In this work, it is demonstrated that the imaging scatterometry technique is capable of monitoring the MBE fabrication process of InAs-nanowire arrays during the different process steps. Relevant parameters such as thin film thickness, hole depth, and diameter, etc., are found with nm precision for a macroscopic area in a few minutes. Using this approach, we demonstrate that errors can be caught early in the process and ultimately save resources while assuring a high quality of the final material.
The alert did not successfully save. Please try again later.
Jonas Skovlund Møller Madsen, Søren Alkærsig Jensen, Thomas Kanne, Jesper Nygård, Poul Erik Hansen, "Optical metrology for nanowires grown with molecular beam epitaxy," Proc. SPIE 11291, Quantum Dots, Nanostructures, and Quantum Materials: Growth, Characterization, and Modeling XVII, 1129111 (2 March 2020); https://doi.org/10.1117/12.2553680