Contents

- xi Authors
- xvii Conference Committee
- xxi 2020 Medical Imaging Award Recipients

SESSION 1 IMAGE SYNTHESIS, GANS, AND NOVEL ARCHITECTURES

11313 03	Multi-modality MRI arbitrary transformation using unified generative adversarial networks [11313-1]
11313 05	Multi-modality super-resolution loss for GAN-based super-resolution of clinical CT images using micro CT image database [11313-3]
11313 07	GANet: group attention network for diabetic retinopathy image segmentation [11313-5]
11313 08	Fully automated segmentation of hyper-reflective foci in OCT images using a U-shape network [11313-6]
11313 09	Adversarial domain adaptation for multi-device retinal OCT segmentation [11313-7]

SESSION 2 IMAGE ANALYSIS IN ULTRASOUND AND OCT: JOINT SESSION WITH CONFERENCES 11313 AND 11319

11313 0A	Left ventricular and atrial segmentation of 2D echocardiography with convolutional neural networks [11313-9]
11313 0B	Multiresolution LOGISMOS graph search for automated choroidal layer segmentation of 3D macular OCT scans [11313-10]
11313 0C	Self-fusion for OCT noise reduction [11313-11]

SESSION 3 LESIONS AND PATHOLOGIES

| 11313 0D | Deep multi-task prediction of lung cancer and cancer-free progression from censored heterogenous clinical imaging [11313-12] |
| 11313 0E | Fine-grained tumor segmentation on computed tomography slices by leveraging bottom-up and top-down strategies [11313-13] |
SESSION 4 MACHINE LEARNING AND DEEP LEARNING

11313 0F Extracting 2D weak labels from volume labels using multiple instance learning in CT hemorrhage detection [11313-14]

11313 0G Coronary artery calcium scoring: Can we do better? (Image Processing Student Paper Award) [11313-15]

11313 0H Finding novelty with uncertainty [11313-16]

11313 0I Towards reduced-preparation spectral-CT-colonography utilizing local covariance [11313-17]

SESSION 4 MACHINE LEARNING AND DEEP LEARNING

11313 0J Estimation of four-dimensional CT-based imaging biomarker of liver fibrosis using finite element method [11313-18]

11313 0K Multilevel survival analysis with structured penalties for imaging genetics data [11313-19]

11313 0L Generalizing deep whole brain segmentation for pediatric and post-contrast MRI with augmented transfer learning [11313-20]

11313 0M Deep learning and multi-contrast-based denoising for low-SNR Arterial Spin Labeling (ASL) MRI [11313-21]

11313 0N Artifact reduction in brain magnetic resonance imaging (MRI) by means of a dense residual network with K-space blending (DRN-KB) [11313-22]

SESSION 5 REGISTRATION

11313 0O Deformable alignment of longitudinal postoperative brain GBM scans using deep learning [11313-23]

11313 0P An adversarial machine-learning-based approach and biomechanically guided validation for improving deformable image registration accuracy between a planning CT and cone-beam CT for adaptive prostate radiotherapy applications [11313-24]

11313 0Q Deep-learning-based CT-CBCT image registration for adaptive radio therapy [11313-25]

11313 0R Mutual information for unsupervised deep learning image registration [11313-26]

SESSION 6 FMRI AND DTI

11313 0S Deep learning estimation of multi-tissue constrained spherical deconvolution with limited single shell DW-MRI [11313-27]
SESSION 7 KEYNOTE AND HIGHLIGHTS

11313 0Y Variational intensity cross channel encoder for unsupervised vessel segmentation on OCT angiography [11313-33]

11313 0Z Cardiac cine MRI left ventricle segmentation combining deep learning and graphical models [11313-34]

11313 10 Contrast phase classification with a generative adversarial network [11313-35]

SESSION 8 LABELING AND SEGMENTATION

11313 11 Vessel wall segmentation of common carotid artery via multi-branch light network [11313-36]

11313 12 Anatomical labeling of human airway branches using novel two-step machine learning and hierarchical features [11313-37]

11313 13 Incorporating minimal user input into deep-learning-based image segmentation [11313-38]

11313 14 Weakly supervised pancreas segmentation based on class activation maps [11313-39]

11313 15 Detection of frame informativeness in endoscopic videos using image quality and recurrent neural networks [11313-40]

SESSION 9 DEEP LEARNING: SEGMENTATION

11313 16 Spatial information-embedded fully convolutional networks for multi-organ segmentation with improved data augmentation and instance normalization [11313-41]

11313 17 Identification of kernels in a convolutional neural network: connections between the level set equation and deep learning for image segmentation [11313-42]

11313 18 Influence of decoder size for binary segmentation tasks in medical imaging [11313-43]
SESSION 10 SEGMENTATION: ANATOMY

11313 1C Combining deep learning and model-based segmentation for labeled spine CT segmentation [11313-47]

11313 1D Combining model- and deep-learning-based methods for the accurate and robust segmentation of the intra-cochlear anatomy in clinical head CT images [11313-48]

11313 1E Multi-class semantic segmentation of pediatric chest radiographs [11313-49]

11313 1F Exploiting clinically available delineations for CNN-based segmentation in radiotherapy treatment planning [11313-50]

11313 1G Anatomy segmentation evaluation with sparse ground truth data [11313-51]

SESSION 11 DEEP LEARNING: UNCERTAINTY AND QUALITY

11313 1H Adding uncertainty to dermatological assistance [11313-52]

11313 1I Semi-supervised multi-organ segmentation through quality assurance supervision [11313-53]

11313 1J Visualization approach to assess the robustness of neural networks for medical image classification [11313-54]

11313 1K An exploration of uncertainty information for segmentation quality assessment [11313-55]

11313 1L Robust chest x-ray quality assessment using convolutional neural networks and atlas regularization [11313-56]

11313 1M Automatic online quality control of synthetic CTs [11313-57]

SESSION 12 NUCLEAR AND MOLECULAR

11313 1N Homology-based approach for prognostic prediction of lung cancer using novel topologically invariant radiomic features [11313-58]
<table>
<thead>
<tr>
<th>Session</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>1O</td>
<td>Fully convolutional network with sparse feature-maps composition for automatic lung tumor segmentation from PET images [11313-59]</td>
</tr>
<tr>
<td>1P</td>
<td>Ultra-low-dose 18F-FDG brain PET/MR denoising using deep learning and multi-contrast information [11313-60]</td>
</tr>
<tr>
<td>1Q</td>
<td>The improved reconstruction of fluorescence molecular tomography via regularized doubly orthogonal matching pursuit method [11313-61]</td>
</tr>
<tr>
<td>1R</td>
<td>Automated threshold selection on whole-body 18F-FDG PET/CT for assessing tumor metabolic response [11313-62]</td>
</tr>
<tr>
<td>S</td>
<td>POSTER SESSION</td>
</tr>
<tr>
<td>1S</td>
<td>Identifying the common and subject-specific functional units of speech movements via a joint sparse non-negative matrix factorization framework [11313-63]</td>
</tr>
<tr>
<td>1U</td>
<td>Network features of simultaneous EEG and fMRI predict working memory load [11313-65]</td>
</tr>
<tr>
<td>1V</td>
<td>Hybrid dictionary learning-ICA approaches built on novel instantaneous dynamic connectivity metric provide new multiscale insights into dynamic brain connectivity [11313-66]</td>
</tr>
<tr>
<td>1W</td>
<td>Self-adaptive 2D-3D ensemble of fully convolutional networks for medical image segmentation [11313-67]</td>
</tr>
<tr>
<td>1X</td>
<td>Choroidal atrophy segmentation based on deep network with deep-supervision and EDT-auxiliary-loss [11313-68]</td>
</tr>
<tr>
<td>1Y</td>
<td>Multi-planar whole heart segmentation of 3D CT images using 2D spatial propagation CNN [11313-69]</td>
</tr>
<tr>
<td>1Z</td>
<td>An improved U-Net for nerve fibre segmentation in confocal corneal microscopy images [11313-70]</td>
</tr>
<tr>
<td>20</td>
<td>Segmentation of choroid neovascularization in OCT images based on convolutional neural network with differential amplification blocks [11313-71]</td>
</tr>
<tr>
<td>21</td>
<td>Automated retinopathy of prematurity screening using deep neural network with attention mechanism [11313-72]</td>
</tr>
<tr>
<td>22</td>
<td>Estimating standard-dose PET from low-dose PET with deep learning [11313-73]</td>
</tr>
<tr>
<td>23</td>
<td>Internal-transfer weighting of multi-task learning for lung cancer detection [11313-74]</td>
</tr>
<tr>
<td>24</td>
<td>Reduction of motion artifacts in head CT exams using multi-scale convolutional neural network [11313-75]</td>
</tr>
<tr>
<td>25</td>
<td>CAI-UNet for segmentation of liver lesion in CT image [11313-76]</td>
</tr>
</tbody>
</table>
11313 26 Enhancing infarct segmentation performance using domain-specific attention in acute ischemic stroke [11313-77]

11313 27 A grid-line suppression technique based on deep convolutional neural networks [11313-78]

11313 28 An end-to-end deep learning approach for landmark detection and matching in medical images [11313-79]

11313 29 Non-rigid MRI-CT image registration with unsupervised deep-learning-based deformation prediction [11313-80]

11313 2A A target-oriented and multi-patch-based framework for image quality assessment on carotid artery MRI [11313-81]

11313 2B Convolutional neural-network-based ordinal regression for brain age prediction from MRI scans [11313-82]

11313 2C Segmentation of stem cell colonies in fluorescence microscopy images with transfer learning (Cum Laude Poster Award) [11313-83]

11313 2D Automatic epicardial fat segmentation in cardiac CT imaging using 3D deep attention U-Net [11313-84]

11313 2E New loss functions for medical image registration based on VoxelMorph [11313-85]

11313 2F A GICA-TVGL framework to study sex differences in resting state fMRI dynamic connectivity [11313-86]

11313 2G A generalized method for computation of n-dimensional Radon transforms [11313-87]

11313 2H Enhanced low-rank plus group sparse decomposition for speckle reduction in OCT images [11313-88]

11313 2I Metal artifacts reduction in computed tomography by Fourier coefficient correction using convolutional neural network [11313-89]

11313 2J Super-resolution magnetic resonance imaging reconstruction using deep attention networks [11313-90]

11313 2K Simultaneously spatial and temporal higher-order total variations for noise suppression and motion reduction in DCE and IVIM [11313-91]

11313 2L Liver synthetic CT generation based on a dense-CycleGAN for MRI-only treatment planning [11313-92]

11313 2M FunSyn-Net: enhanced residual variational auto-encoder and image-to-image translation network for fundus image synthesis [11313-93]

11313 2N Deep similarity learning using a Siamese ResNet trained on similarity labels from disparity maps of cerebral MRA MIP pairs [11313-94]
<table>
<thead>
<tr>
<th>Paper ID</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>11313-2O</td>
<td>Validation and optimization of multi-organ segmentation on clinical imaging archives</td>
<td>95</td>
</tr>
<tr>
<td>11313-2P</td>
<td>A quasi-conformal mapping-based data augmentation technique for brain tumor segmentation</td>
<td>96</td>
</tr>
<tr>
<td>11313-2Q</td>
<td>MRI correlates of chronic symptoms in mild traumatic brain injury</td>
<td>97</td>
</tr>
<tr>
<td>11313-2R</td>
<td>Development of a 3D carotid atlas for quantification of local volume change</td>
<td>98</td>
</tr>
<tr>
<td>11313-2S</td>
<td>Integrating deep transfer learning and radiomics features in glioblastoma multiforme patient survival prediction</td>
<td>99</td>
</tr>
<tr>
<td>11313-2T</td>
<td>An unsupervised deep learning approach for 4DCT lung deformable image registration</td>
<td>100</td>
</tr>
<tr>
<td>11313-2U</td>
<td>Cone-beam Computed Tomography (CBCT) and CT image registration aided by CBCT-based synthetic CT</td>
<td>101</td>
</tr>
<tr>
<td>11313-2V</td>
<td>Imposing implicit feasibility constraints on deformable image registration using a statistical generative model</td>
<td>102</td>
</tr>
<tr>
<td>11313-2W</td>
<td>Local structure orientation: a new method for histology and MRI coregistration</td>
<td>103</td>
</tr>
<tr>
<td>11313-2X</td>
<td>Unsupervised learning-based deformable registration of temporal chest radiographs to detect interval change</td>
<td>104</td>
</tr>
<tr>
<td>11313-2Y</td>
<td>Weakly non-rigid MR-TRUS prostate registration using fully convolutional and recurrent neural networks</td>
<td>105</td>
</tr>
<tr>
<td>11313-2Z</td>
<td>Feature-based retinal image registration for longitudinal analysis of patients with age-related macular degeneration</td>
<td>106</td>
</tr>
<tr>
<td>11313-31</td>
<td>Multi-label segmentation of bone, muscle, and fat in CT volumes via convex relaxation</td>
<td>108</td>
</tr>
<tr>
<td>11313-32</td>
<td>Group-wise attention fusion network for choroid segmentation in OCT images</td>
<td>109</td>
</tr>
<tr>
<td>11313-33</td>
<td>Automatic lung segmentation in low-dose CT image with contrastive attention module</td>
<td>110</td>
</tr>
<tr>
<td>11313-34</td>
<td>Attention-guided channel to pixel convolution network for retinal layer segmentation with choroidal neovascularization</td>
<td>111</td>
</tr>
<tr>
<td>11313-35</td>
<td>Attention multi-scale network for pigment epithelial detachment segmentation in OCT images</td>
<td>112</td>
</tr>
<tr>
<td>11313-36</td>
<td>Outlier guided optimization of abdominal segmentation</td>
<td>113</td>
</tr>
<tr>
<td>11313-37</td>
<td>Reflection-equivariant convolutional neural networks improve segmentation over reflection augmentation</td>
<td>114</td>
</tr>
</tbody>
</table>
Synthetic MRI-aided pelvic multi-organ segmentation in cone-beam computed tomography [11313-115]

Comparison of training strategies for the segmentation of retina layers in optical coherence tomography images of rodent eyes using convolutional neural networks [11313-116]

Multi-organ segmentation in head and neck MRI using U-Faster-RCNN [11313-117]

Improved automated segmentation of human kidney organoids using deep convolutional neural networks [11313-118]

Segmenting retinal OCT images with inter-B-scan and longitudinal information [11313-119]

Multi-atlas-based tissue identification in the lower leg using pQCT [11313-120]

Unsupervised local feature learning for sensitive three-dimensional ultrasound assessment of carotid atherosclerosis [11313-121]
Authors

Numbers in the index correspond to the last two digits of the seven-digit citation identifier (CID) article numbering system used in Proceedings of SPIE. The first five digits reflect the volume number. Base 36 numbering is employed for the last two digits and indicates the order of articles within the volume. Numbers start with 00, 01, 02, 03, 04, 05, 06, 07, 08, 09, 0A, 0B...0Z, followed by 10-1Z, 20-2Z, etc.

Abràmoff, Michael D., 0B
Abramson, Richard G., 10, 11, 20, 36
Abu Bakar Ali, Asad, 39
Acha, B., 31
Actor, Jonas A., 17
Alderliesten, Tanja, 1B, 28
Alessio, Adam, 1E
Al-Kofahi, Yousef, 38
Alyami, Wadha, 2W
Amouzandeh, Ghoncheh, 0W
An, Chansik, 0I
An, Dongsheng, 2P
An, Yu, 1Q
Anderson, Adam W., 2Q
Andreeczyk, Vincent, 1K
Antic, Sanja L., 0D, 23
Armitage, H., 1N
Atay, Yigit, 0C
Arimura, H., 1N
Atar, John, 0Z
Bao, Dengsen, 35
Barker, Gareth J., 2B
Baxter, John S. H., 1A
Bay, Camden, 2S
Beers, Andrew, 1K
Bergman, J., 15
Bermudez, Camilo, 0F, 0L, 10
Bindschaider, Michael, 1E
Biswas, Taposh, 3D
Blaber, Justin, 0L, 2Q
Boers, T. G. W., 15
Bosman, Peter A. N., 1B, 28
Boume, Roger, 2W
Bradley, Jeffrey D., 2T
Brück, Matthias, 1L
Buerger, Christian, 1C
Burgos, Ninon, 1J
Butman, John A., 0F
Bystryk, Daniel, 1L
Cai, Biao, 2F
Calabresi, Peter A., 09, 0Y, 3C
Calhoun, Vince D., 1V, 2F
Cao, Minsong, 0P
Carass, Aaron, 09, 0H, 0Y, 37, 3C
Chan, Kwok-Leung, 11
Chang, Catie, 0V
Chang, Eric, 0O
Chang, Ken, 1K
Chapman, David, 2C
Chen, Antong, 39
Chen, Eric H. Y., 0U
Chen, Feng, 21
Chen, Li, 2A
Chen, Quying, 32
Chen, Xin, 2S
Chen, Xinjian, 07, 08, 10, 1X, 1Z, 20, 21, 2H, 32, 33, 34, 35
Chen, Xue-li, 2R
Chen, Yunqiang, 0H, 10, 11, 20, 36
Chenevert, Thomas L., 0W
Cheng, Xuena, 1X, 32, 35
Cheon, Sodam, 25
Chew, Emily Y., 22
Chia, Ser Mien, 39
Chin Fatt, Cherisse, 0T
Chin, Chih-Liang, 39
Chiu, Bernard, 11, 2R, 3E
Colliot, Olivier, 0K, 1J
Comellas, Alejandro P., 12
Cruz, Nelly M., 3B
Cukras, Catherine, 2Z
Curran, Walter J., 03, 22, 29, 2D, 2J, 2L, 2T, 2U, 2Y, 38, 3A
Curvers, W., 15
Damania, Rani J., 1H
Dawant, Benoit M., 1D
de Groof, J., 15
Deist, Timo M., 28
Deng, Jie, 0N
Depeursinge, Adrien, 1K
Deppen, Steve, 23
De Silva, Tharindu, 2Z
De Vos, Bob D., 0G, 0R
De With, Peter H. N., 15, 18
Dhanantwari, Amarn, 0L
Ding, Yao, 2K
Dirks, Ine, 1R
Dong, Xue, 22, 38, 3A
Dormer, James D., 13
Dormont, Didier, 1J
Du, Anan, 0E
Du, Bo, 19
Du, Yang, 1Q
Dushatsky, Arkadiy, 1B
El Fakhri, Georges, 15
Elghohari, Baher A., 2K
Elhalawani, Hesham, 2K
Elliott, Daniel, 0P
Elhalawani, Hesham, 2K
Elliott, Daniel, 0P
Sokolova, Ksenia, 2B
Solomon, Sharon D., 0Y, 3C
Song, Pellun, 0U
Sonka, Milan, 0B
Spence, J. David, 11, 2R, 3E
Stanfel, Marja, 2H
Staring, Marius, 0R
Stephen, Julia M., 2F
Stiehl, Brad, 0P
Stone, Maureen, 1S
Stough, Joshua V., 0U
Struyvenberg, M., 15
Su, Bin, 2A
Su, Jinzhu, 20
Sugino, Takaaki, 05
Sullivan, Ryan, 1E
Sundgaard, Josefine Vilsbøell, 1Y
Takabatake, Hirotsugu, 05
Tan, Haochong, 1O, 33
Tian, Jie, 1Q
Tian, SiBo, 38
Tong, Yubing, 1G
Tönness, Klaus D., 2N
Torgj, Alex, 01
Trivedi, MadhuKaur H., 0T
Udupa, Jayaram K., 1G
van der Putten, Joost, 15, 18
van der Sommen, Fons, 15, 18
van der Velden, Bas H. M., 0R
van Harten, Louis D., 1F, 1M
Van Velzen, Sanne M., 0G
V., Manikanda Krishnan, 26
Vandemeulebroucke, Jef, 1R
Verheoef, Joost J.C., 1F, 1M
Verkooijen, Helena M., 0G
Viergever, Max A., 0G
von Berg, Jens, 1C, 1L
Wohle, Andreas, 0B
Wan, Justin W. L., 2I
Wang, Chenglong, 16
Wang, Jianing, 1D
Wang, Lieheng, 1G
Wang, Tonghe, 22, 29, 2D, 2I, 2T, 2U, 2Y, 38, 3A
Wang, Yan, 0E
Wang, Yaping, 0U
Wang, Yu-Ping, 2F
Wang, Yufong, 1U
Warren, Alexis K., 0B
Watanabe, Hiroko, 2A
Wedeen, Van J., 1S
Whitmore, S. Scott, 0B
Wicks, Chris, 1H
Wieberneit, Nataly, 1L
Wiemker, Rafael, 0I
Wiersma, Jan, 2B
Wilson, Tony W., 2F
Wolterink, Jelmer M., 1F, 1M
Woo, Jonghye, 1S
Wood, Bradford J., 19
Wright, Graham, 02
Wu, YingNian, 2V
Wu, Zhihan, 0F
Xiang, Daoman, 21
Xiang, Dehui, 1Q, 32, 33, 34
Xing, FangXu, 1S
Xing, XianLei, 2V
Xu, Dongxiang, 2A
Xu, Junshen, 1P
Xu, Sheng, 19
Xu, Xiaoyin, 2P, 2S
Xu, Xun, 32
Xu, Yucheng, 1Q, 2D, 2I, 2T, 2U, 2Y, 38, 3A
Yang, Xiaoling, 03, 22, 29, 2D, 2I, 2T, 2U, 2Y, 38, 3A
Yao, Li, 20
Ye, Lei, 07
Yee, Judy, 01
Yeh, Benjamin M., 01
Yesha, Yaacov, 2C
Young, Geoffrey S., 2P, 2S
Young, Kristina H., 2K
Young, Stewart, 1L
Yousefhussein, Mohammad, 3B
Yu, Kun-Hsing, 2S
Yu, Victoria, 0O
Yu, ZhenMei, 0E
Yuan, Chun, 2A
Yuan, Kehong, 2E
Yuras, Yuki, 0J
Zaharchuk, Greg, 0M, 1P
Zelek, John, 2M
Zeng, Qiulan, 2Y
Zhang, Dongqiang, 1D
Zhang, Honghai, 0B
Zhang, LongJiang, 2D
Zhang, Min, 2P
Zhang, ShengChao, 0V
Zhang, Xiaoyan, 0A
Zhao, Huilin, 2A
Zhao, Jun, 2X
Zhao, Xiaojie, 1U
Zhao, Xihai, 2A
Zhao, Yuan, 2R, 3E
Zheng, Tong, 05
Zhou, Jun, 29, 2L, 3A
Conference Committee

Symposium Chairs

Georgia D. Tourassi, Oak Ridge National Laboratory (United States)
Metin N. Gurcan, Wake Forest Baptist Medical Center (United States)

Conference Chairs

Ivana Išgum, Amsterdam UMC (Netherlands)
Bennett A. Landman, Vanderbilt University (United States)

Conference Program Committee

Elsa D. Angelini, Imperial College London (United Kingdom) and Columbia University (United States) and Télécom ParisTech (France)
Meritxell Bach-Cuadra, Université de Lausanne (Switzerland)
Ulas Bagci, University of Central Florida (United States)
Antong Chen, Merck & Co., Inc. (United States)
Olivier Colliot, Centre National de la Recherche Scientifique (France)
Tolga Çukur, Bilkent University (Turkey)
Benoît M. Dawant, Vanderbilt University (United States)
Marleen de Bruijne, Erasmus MC (Netherlands)
Lotta Maria Ellingsen, University of Iceland (Iceland)
Alexandre X. Falcão, Universidade Estadual de Campinas (Brazil)
Aaron Fenster, Robarts Research Institute (Canada)
James Fishbaugh, NYU Tandon School of Engineering (United States)
Alejandro F. Frangi, University of Leeds (United Kingdom)
Yu Gan, The University of Alabama (United States)
Mona K. Garvin, The University of Iowa (United States)
James C. Gee, University of Pennsylvania (United States)
Benjamin Glocker, Imperial College London (United Kingdom)
Miguel Angel González Ballester, Universitat Pompeu Fabra (Spain)
Hayit Greenspan, Tel Aviv University (Israel)
David R. Haynor, University of Washington (United States)
Tobias Heimann, Siemens Healthineers (Germany)
Christine P. Hendon, Columbia University (United States)
Stefan Klein, Erasmus MC (Netherlands)
Leigh Johnston, The University of Melbourne (Australia)
Tianhu Lei, MD Imaging Research (United States)
Karim Lekadir, Universitat de Barcelona (Spain)
Boudewijn P. F. Lelieveldt, Leiden University Medical Center (Netherlands)
Natasha Lepore, The University of Southern California (United States)
Marius George Linguraru, Children’s National Medical Center
(United States)
Murray H. Loew, The George Washington University (United States)
Cristian Lorenz, Philips Research (Germany)
Frederik Maes, Katholieke Universiteit Leuven (Belgium)
Vincent A. Magnotta, The University of Iowa Hospitals and Clinics
(United States)
Rashindra Manniesing, Radboud University Medical Center
(Netherlands)
Diana Mateus, École Centrale de Nantes (France)
Jhimli Mitra, GE Global Research (United States)
Sunanda D. Mitra, Texas Tech University (United States)
Marc Modat, King’s College London (United Kingdom)
Albert Montillo, University of Texas Southwestern Medical Center
(United States)
Kensaku Mori, Nagoya University (Japan)
Mads Nielsen, Niels Bohr Institute (Denmark)
Ipek Oguz, Vanderbilt University (United States)
Dzung L. Pham, Henry Jackson Foundation/USU (United States) and
National Institutes of Health (United States) and Johns Hopkins
University (United States)
Jerry L. Prince, Johns Hopkins University (United States)
Jiantao Pu, University of Pittsburgh (United States)
Xin Qi, Rutgers, The State University of New Jersey (United States)
Maryam E. Rettmann, Mayo Clinic (United States)
Letícia Rittner, Universidade Estadual de Campinas (Brazil)
Mirabela Rusu, Stanford University School of Medicine (United States)
Punam K. Saha, The University of Iowa (United States)
Lin Shi, The Chinese University of Hong Kong (China)
Rachel E. Sparks, King’s College London (United Kingdom)
Marius Staring, Leiden University Medical Center (Netherlands)
Martin A. Snyner, The University of North Carolina at Chapel Hill
(United States)
Kenji Suzuki, Illinois Institute of Technology (United States)
Tanveer F. Syeda-Mahmood, IBM Research - Almaden (United States)
Raphael Sznitman, Universität Bern (Switzerland)
Zeike A. Taylor, University of Leeds (United Kingdom)
Jayaram K. Udupa, University of Pennsylvania (United States)
Koen Van Leemput, Harvard Medical School (United States) and
Massachusetts General Hospital (United States)
Tomaž Vrtovec, University of Ljubljana (Slovenia)
Wolfgang Wein, ImFusion GmbH (Germany)
Session Chairs

1 Image Synthesis, GANs, and Novel Architectures
 Punam Kumar Saha, The University of Iowa (United States)
 Mirabela Rusu, Stanford University School of Medicine (United States)

2 Image Analysis in Ultrasound and OCT: Joint Session with Conferences 11313 and 11319
 Jayaram K. Udupa, Penn Medicine (United States)
 Nicole V. Ruiter, Karlsruher Institut für Technologie (Germany)

3 Lesions and Pathologies
 Ipek Oguz, Vanderbilt University (United States)
 Kenji Suzuki, Tokyo Institute of Technology (Japan)

4 Machine Learning and Deep Learning
 Olivier Colliot, Centre National de la Recherche Scientifique (France)
 Jhimli Mitra, GE Global Research (United States)

5 Registration
 Murray H. Loew, The George Washington University (United States)
 Mirabela Rusu, Stanford University School of Medicine (United States)

6 fMRI and DTI
 Juan Carlos Prieto, The University of North Carolina at Chapel Hill (United States)
 Mads Nielsen, University of Copenhagen (Denmark)

7 Keynote and Highlights
 James C. Gee, University of Pennsylvania (United States)
 Jhimli Mitra, GE Global Research (United States)

8 Labeling and Segmentation
 Antong Chen, Merck & Co., Inc. (United States)
 Bennett A. Landman, Vanderbilt University (United States)

9 Deep Learning: Segmentation
 Dzung L. Pham, Henry M. Jackson Foundation (United States)
 Benoit M. Dawant, Vanderbilt University (United States)

10 Segmentation: Anatomy
 Maryam E. Rettmann, Mayo Clinic (United States)
 Letícia Rittner, Universidade Estadual de Campinas (Brazil)

11 Deep Learning: Uncertainty and Quality
 Benoit M. Dawant, Vanderbilt University (United States)
 Ipek Oguz, Vanderbilt University (United States)
12 Nuclear and Molecular

Antong Chen, Merck & Co., Inc. (United States)
Jayaram K. Udupa, Penn Medicine (United States)
2020 Medical Imaging Award Recipients

Robert F. Wagner Best Student Paper Award
Robert F. Wagner was an active scientist in the SPIE Medical Imaging meeting, starting with the first meeting in 1972 and continuing throughout his career. He ensured that the BRH, and subsequently the CDRH, was a sponsor for the early and subsequent Medical Imaging meetings, helping to launch and ensure the historical success of the meeting. The Robert F. Wagner All-Conference Best Student Paper Award (established 2014) is acknowledgment of his many important contributions to the Medical Imaging meeting and his many important advances to the field of medical imaging.

This award is co-sponsored by:

The Medical Image Perception Society

2020 Recipients:

First Place: Multi-body registration for fracture reduction in orthopaedic trauma surgery (11315-14)
R. Han, A. Uneri, P. Wu, R. Vijayan, P. Vagdargi, M. Ketcha, N. Sheth, Johns Hopkins University (United States), S. Vogt, G. Kleinszig, Siemens Healthineers (Germany) G. M. Osgood, John Hopkins Hospital (United States), J. H. Siewerdsen, John Hopkins University (United States)

Second Place: Phase contrast CT enabled three-material decomposition in spectral CT imaging (11312-47)
Xu Ji, Ran Zhang, Ke Li, Guang-Hong Chen, University of Wisconsin School of Medicine and Public Health (United States)

Image Processing Student Paper Awards sponsored by 12 Sigma Technologies

Winner: Coronary artery calcium scoring: can we do better? (11313-15)
Sanne G.M. van Velzen, Bob D. de Vos, University Medical Center Utrecht and Utrecht University (Netherlands), Helena M. Verkooijen, Tim Leiner, University Medical Center Utrecht (Netherlands), Max A. Viergever, University Medical Center Utrecht and Utrecht University (Netherlands), Ivana Išgume, University Medical Center Utrecht and Amsterdam University Medical Center (Netherlands)
Runner-up: Validation and optimization of multi-organ segmentation on clinical imaging archives (11313-95)

Olivia Tang, Yuchen Xu, Yucheng Tang, Ho Hin Lee, Vanderbilt University (United States), Yunqiang Chen, Dashan Gao, Shizhong Han, 12 Sigma Technologies (United States), Riqiang Gao, Vanderbilt University (United States), Michael R. Savona, Richard G. Abramson, Vanderbilt University Medical Center (United States), Yuankai Huo, Vanderbilt University (United States), Bennett A. Landman, Vanderbilt University and Vanderbilt University Medical Center (United States)