You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
16 March 2020Improvement of classification performance using harmonization across field strength of radiomic features extracted from DCE-MR images of the breast
Radiomic features extracted from dynamic contrast-enhanced magnetic resonance (DCE-MR) images of breast lesions can be used in computer-aided diagnosis. However, some features depend upon field strength of acquisition. This motivates investigation of harmonizing the features using a method to address this “batch” effect of field strength of image acquisition. In this study, thirty-two radiomic features were extracted from DCE-MR images of 1,164 lesions (264 benign, 900 cancers) of the breast acquired at 1.5 T or 3.0 T, after segmentation using a fuzzy C-means method. ComBat harmonization was applied in terms of feature categories of morphology, enhancement texture, and most kinetic curve features, due to their potential intrinsic dependence upon field strength of image acquisition. The covariate was status of lesions as benign or malignant. Changes to features were investigated with the Kolmogorov-Smirnov test statistic and the Davies-Bouldin index for degree of clustering using features reduced from 32 to 2 via t-SNE. Classification performance in the task of distinguishing lesions as benign or malignant was evaluated using ten-fold cross-validation and a random forest classifier. The area under the receiver operating characteristic curve (AUC) was used as figure of merit, and classification performance using features in their raw form and in a set using some harmonized features was deemed to be statistically significantly different if p < 0.05. The Kolmogorov-Smirnov test statistic demonstrated that feature value distributions changed the most in features extracted from images acquired at 3.0 T. The Davies-Bouldin index was 6% and 7% respective for benign lesions and cancers, showing that the features became more similar as a result of harmonization. AUC pre- and post-harmonization [95% CI] was 0.84 [0.81, 0.87] and 0.86 [0.83, 0.88] respectively (p = 0.0012). These results suggest that harmonization of radiomic features across field strength of image acquisition may improve the classification performance of computer-aided diagnosis using datasets acquired at different imaging field strengths.
Heather M. Whitney andMaryellen L. Giger
"Improvement of classification performance using harmonization across field strength of radiomic features extracted from DCE-MR images of the breast", Proc. SPIE 11314, Medical Imaging 2020: Computer-Aided Diagnosis, 113140X (16 March 2020); https://doi.org/10.1117/12.2548129
The alert did not successfully save. Please try again later.
Heather M. Whitney, Maryellen L. Giger, "Improvement of classification performance using harmonization across field strength of radiomic features extracted from DCE-MR images of the breast," Proc. SPIE 11314, Medical Imaging 2020: Computer-Aided Diagnosis, 113140X (16 March 2020); https://doi.org/10.1117/12.2548129