Translator Disclaimer
Presentation + Paper
16 March 2020 Direct classification of type 2 diabetes from retinal fundus images in a population-based sample from the Maastricht study
Author Affiliations +
Abstract
Type 2 Diabetes (T2D) is a chronic metabolic disorder that can lead to blindness and cardiovascular disease. Information about early stage T2D might be present in retinal fundus images, but to what extent these images can be used for a screening setting is still unknown. In this study, deep neural networks were employed to differentiate between fundus images from individuals with and without T2D. We investigated three methods to achieve high classification performance, measured by the area under the receiver operating curve (ROC-AUC). A multi-target learning approach to simultaneously output retinal biomarkers as well as T2D works best (AUC = 0.746 [±0.001]). Furthermore, the classification performance can be improved when images with high prediction uncertainty are referred to a specialist. We also show that the combination of images of the left and right eye per individual can further improve the classification performance (AUC = 0.758 [±0.003]), using a simple averaging approach. The results are promising, suggesting the feasibility of screening for T2D from retinal fundus images.
Conference Presentation
© (2020) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Friso G. Heslinga, Josien P. W. Pluim, A.J.H.M. Houben, Miranda T. Schram, Ronald M. A. Henry, Coen D. A. Stehouwer, Marleen J. van Greevenbroek, Tos T.J.M. Berendschot, and Mitko Veta "Direct classification of type 2 diabetes from retinal fundus images in a population-based sample from the Maastricht study", Proc. SPIE 11314, Medical Imaging 2020: Computer-Aided Diagnosis, 113141N (16 March 2020); https://doi.org/10.1117/12.2549574
PROCEEDINGS
6 PAGES + PRESENTATION

SHARE
Advertisement
Advertisement
Back to Top