You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
16 March 2020Network output visualization to uncover limitations of deep learning detection of pneumothorax
The overlapping structures in a chest radiograph can make the detection of pneumothorax difficult. In addition, the visual signs of a pneumothorax, including a fine line at the edge of the lung and a change in texture outside the lung, can be subtle. Some published studies have reported high performances using deep learning for the detection of pneumothorax in chest radiographs using the publicly available ChestX-ray8 dataset. However, at the image input sizes these studies used, 256 x 256 or 224 x 224 pixels, the visual signs of a pneumothorax are typically not visible. In this study, radiographs labeled as pneumothorax in the ChestX-ray8 dataset were interpreted by a radiologist and then confirmed using the radiologist-defined truth from a pneumothorax challenge database. In addition, chest radiographs with and without pneumothorax were obtained from our institution and verified. Therefore, the entire dataset of 5,346 radiographs had truth confirmed by two radiologists. The dataset was used for fine-tuning a VGG19 neural network for the task of detecting pneumothorax in chest radiographs. After fine-tuning was complete, network visualization was performed using Grad-CAM to determine the most influential aspects of the radiograph for the network’s classification. It was found that 67% of Grad-CAM heatmaps for correctly classified pneumothorax cases did not have regions of high influence that overlapped with the actual location of the pneumothorax. Overall, the independent test set yielded an AUC of 0.78 (95% confidence interval: 0.74, 0.82) in the task of distinguishing between radiographs with and without pneumothorax.
The alert did not successfully save. Please try again later.
Jennie Crosby, Sophia Chen, Feng Li, Heber MacMahon, Maryellen Giger, "Network output visualization to uncover limitations of deep learning detection of pneumothorax," Proc. SPIE 11316, Medical Imaging 2020: Image Perception, Observer Performance, and Technology Assessment, 113160O (16 March 2020); https://doi.org/10.1117/12.2550066