You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
18 December 2019Analysis of access network requirements based on similar service feature values clustering
This paper proposes an access network requirements analysis method based on similar service feature values clustering. The network service feature values data are collected from the real access network, including devices and users’ information. The K-means ++ algorithm is adopted to cluster the PON ports, based on the similar service feature values of users connected to them. 3 classifiers are selected for classification training and prediction. They are K-nearest neighbors, SVMs and perceptron. In the case of no clustering, K-nearest neighbor algorithm performs better, and the classification correct rate is about 91.1%. And if the data is divided into 5 groups by K-means++ algorithm, it can be calculated that the average accuracy is 94.3%. Compared with the result without clustering of service feature values, it achieves more accurate prediction and the correct rate is increased by 3.3%. With this method, the operator can determine whether the PON port needs to be expanded, making the expansion planning more forward-looking. At the same time, combining the prediction results with the PON port geographic information, it can distinguish areas with sufficient or insufficient broadband resources, and helps operators adjust service allocation plans to match user needs.
The alert did not successfully save. Please try again later.
Jinglei Sun, Hui Li, Yuefeng Ji, Guangquan Wang, Wu Jia, Yudan Su, Yan Shao, "Analysis of access network requirements based on similar service feature values clustering," Proc. SPIE 11340, AOPC 2019: Optical Fiber Sensors and Communication, 113401H (18 December 2019); https://doi.org/10.1117/12.2547841