You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
3 April 2020Biofunctionalization strategies for optical fiber grating immunosensors
Optical fiber sensors are of growing interest in biomedical applications, especially for early diagnosis and in situ assays. Their intrinsic properties bring numerous assets for the detection of low concentrations of analytes, such as easy light injection and the possibility to obtain remote and real-time interrogation of very low amounts of analytes. Among the different optical fiber configurations, tilted fiber Bragg gratings (TFBGs) manufactured in the core of telecommunication-grade optical fibers are known to be highly-sensitive and temperature-compensated refractometers, as they couple light to the surrounding medium. In our work, we have used different strategies to turn them into labelfree (plasmonic) immunosensors. Bare and gold-sputtered configurations were biofunctionalized with antibodies and aptamers, aiming at the detection of cancer biomarkers. In this paper, we review the biofunctionalization processes that can be used in these different cases and discuss the obtained performances. For the most sensitive configuration, we report an experimental limit of detection of 10−12 g/mL in laboratory settings.