You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
3 January 2020Scaling loss: updating gradient of loss for accurate object detection
L1 loss function and Intersection over Union (IoU) are commonly used in object detection. However, minimizing the loss function through training process does not necessarily amount to maximizing IoUs. L1 loss simply assigns equal weights to difference of the width, height, and center point between a prediction box and a ground truth box but pays less attention to the contribution of each shape property. Observing this, we propose scaling loss which can be easily embedded in convolutional neural networks for mitigating the gap between IoU and loss function. The key insight is to add in the loss function the adaptive weights for width, height, and center point that encode the shape properties of the bounding box. The contribution of each shape property will be adaptively adjusted according to the difference between a prediction box and a ground truth box, i.e. increasing the weight assigned to the bad-regressed shape property. By this means, the scaling loss is able to obtain more accurate prediction box. The proposed scaling loss was embedded in Faster R-CNN and SSD, and was validated on PASCAL VOC 2007. Experimental results verify that the proposed scaling loss can improve the detection accuracy over the smooth L1 loss and Softer-NMS.
The alert did not successfully save. Please try again later.
Jiahao Hu, Zihang He, Xiang Ye, Gaoxin Zhang, Yong Li, "Scaling loss: updating gradient of loss for accurate object detection," Proc. SPIE 11373, Eleventh International Conference on Graphics and Image Processing (ICGIP 2019), 113730O (3 January 2020); https://doi.org/10.1117/12.2557236