You have requested a machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Neither SPIE nor the owners and publishers of the content make, and they explicitly disclaim, any express or implied representations or warranties of any kind, including, without limitation, representations and warranties as to the functionality of the translation feature or the accuracy or completeness of the translations.
Translations are not retained in our system. Your use of this feature and the translations is subject to all use restrictions contained in the Terms and Conditions of Use of the SPIE website.
31 January 2020Optimal design of optical refractometer for seawater salinity measurement
Salinity of seawater is one of the most important ocean parameters. Salinity of seawater is mainly obtained by conductivity measurement using CTD (Conductivity-Temperature-Depth). Conversion accuracy between conductivity and salinity relies on the assumption that components of seawater are fixed, as well as high accuracy and synchronism measurements of conductivity, temperature and pressure. The study of seawater salinity based on the V-block optical refractive index method provides a total different principle for salinity measurement. Achieving high resolution seawater optical refractive index measurements could help to study factors affecting the accuracy of salinity measurement. In this paper, the various instrument parameters that affect the accuracy of seawater refractive index measurement are analyzed and the optical refractometer is optimized based on the components on the shelf. This paper systematically analyzed the resolution and tolerance of refractive index measurement on the parameters of V-block refractometer, such as incident angle, external environment and prism refractive index, etc. The optical refractometer with an air film layer on both sides of the V-block was proposed for seawater salinity measurement. With such an optimization, the measurement accuracy is further improved and the tolerance is increased. The theoretical resolution to the seawater refractive index and salinity are 1.8×10-6 and 0.01‰, respectively. Experimentally, we have achieved 3.9×10-6 and 0.021‰ respectively, and a good linearity. The difference between theoretical and experimental results are analyzed.
The alert did not successfully save. Please try again later.
Xia Cen, Juan Su, Guoqiang Li, Wei Wei, Xiaoxue Bai, Chi Wu, "Optimal design of optical refractometer for seawater salinity measurement," Proc. SPIE 11427, Second Target Recognition and Artificial Intelligence Summit Forum, 1142748 (31 January 2020); https://doi.org/10.1117/12.2553186